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@ A d-dimensional quantum system subject to successive
measurements.

@ Between each two measurements the system undergoes deterministic
time evolution described by a unitary operator U.

® There are k possible measurement outcomes.

@ We want to quantify the irreducible randomness of the sequences

of outcomes.
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For an input state p, a unitary U, and a POVM M= {My,... Mg}:
o the probability of obtaining the result i: p;(p)

o the post-measurement state (if the outcome i has been obtained):

Fi(p)

Partial Iterated Function System (PIFS) generated by U and T1.
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For an input state p, a unitary U, and a POVM M = {4, ...

o the probability of obtaining the result i: p;(p)

M

o the post-measurement state (if the outcome i has been obtained):

Fi(p)

Partial Iterated Function System (PIFS) generated by U and T1.
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For an input state p, a unitary U, and a POVM M = {4, ...

o the probability of obtaining the result i: p;(p)
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For an input state p, a unitary U, and a POVM M= {My,... Mg}:
o the probability of obtaining the result i: p;(p) = tr(M;Up U*)

o the post-measurement state (if the outcome i has been obtained):

Fi(p) _ VI Up U*/T;

(0,0, U (generalized Liiders instrument)

Partial Iterated Function System (PIFS) generated by U and T1.
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For an input state p, a unitary U, and a POVM M = {My,..., MNg}:
> the probability of obtaining the result i: p;(p) =tr(M;Up U)
> the post-measurement state (if the outcome i has been obtained):

Filo) = Ytans”

(M 0p T%) (generalized Liiders instrument)

Partial Iterated Function System (PIFS) generated by U and I1.

= We get a Markov chain on quantum states.
= Process induced by Fynon {1,...,k} need not be Markovian.

= Probability of outputting the string of outcomes (i1, ..., /p):
Pir,...in (P) = Pi (P)Pi (Fiy (p)) - i, (Fi_y - - Fiy (p))-
= Evolution of Dirac delta measures on quantum states:

v: 5p — ' 12 kPi(P) 5F,~(p)'

'''''




n-th partial entropy:
k

Hoi= 3, 1(Pi,..in(p+)) where U(X):z{

i1,ein=1

-xIlnx x>0
0 x=0

Quantum dynamical entropy of U with respect to I1:

H
H(U,M) = Jim —= = lim (Hne1 = Hy)

Blackwell integral formula (1957):
H(U,M) = [ Hy dps
(u,m sy L

where p, is the *- limit of (V"(d,,) : neN).

Shannon (1948), Kolmogorov (1958);

Srinivas (1978), Pechukas (1982), Beck & Graudenz (1992) - for projective
measurements; Stomczynski & Zyczkowski (1994) - for generalized measurements;
Crutchfield & Wiesner (2008) - entropy rate



rank-1 POVMs

Let I consist of k one-dim (rescaled) projections: I; = % loi) (il

o Probabilities in the first step: pi(ps) = +
o Post-measurement state: F;(p) =|¢;) (p;| for every p and i
o Probabilities in the subsequent steps: p;(Fi(p)) = %|(g0j|U|gpi>|2

k
= . isuniform, H(U,M) =% > n(%|(%|u|¢i>|2)
ij=1



rank-1 POVMs

Let I consist of k one-dim (rescaled) projections: I1; = % loi) (il

> Probabilities in the first step: pi(ps) = +
> Post-measurement state: F;(p) = |p;) (@i for every p and i
> Probabilities in the subsequent steps: p;(Fi(p)) = %|(g0j|U|gpi>|2

k
= . isuniform, H(U,M) =% > 77(%|<g0j|U|<p,-)|2)
ij=1

o Fi,...,Fy are constant: one symbol ~ one quantum state.

» The process on {1,..., k} is a Markov chain.



rank-1 PVMs

M = projections on an orthonormal basis of C¢

H(U,M) = 4 2177(\ eilUlei))
ij

Quantum dynamical entropy of U (independent of measurement):
HY(U) == max{H(U M): Mis a rank-1 PVM}

=max g Z n (e Ulei))
(¢ =1 i,j=1

orthonormal

bases of C¢

o H¥"(U) depends only on the eigenvalues of U;
o HY(U) = HY"(e9U) for p e R;
00 < H"(U) < Ind.



U ezl 0
(e 0: l+cosé 1-cosf
0 e n(2520) +n (552) <
HY" (Up) =
In2 0>
0 € [0, 7] is the smaller angle
between the eigenvalues of Uy
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We say that a unitary U e UU(C?) is chaotic iff HY"(U) = Ind.

The following conditions are equivalent:
@ U is chaotic;

@ there exists an orthonormal basis {¢;}%; of C? such that
{pi}d, and {Up;}<, are mutually unblased

@ there exists an orthonormal basis {¢;}%; of C? in which
V/d U is represented by a complex Hadamard matrix, i.e.,

|<90i|U|(Pj>|=% foreach i,j=1,....d.

Simple necessary condition: U chaotic = |tr U| < /d.




4i
e2 0 det Uy =1
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between the eigenvalues of Uy

0.6

0.41

0.2

0 T ; :
L L L .
8 4 8 2 8 8



0 € [0, 7] is the smaller angle

between the eigenvalues of Uy

detUp =1
trlUp = 2cos§ €[-2,2]

HY(Up) =In2 < |trUy| < V2

Traces of:

o special unitaries,

o special chaotic unitaries
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Traces of special unitaries

Theorem (Charzynski et al. 2005). All possible traces of special unitary
matrices of size d x d fill in the d-hypocycloid with one cusp at (d,0).

J




Traces of special unitaries

Theorem (Charzyiski et al. 2005). All possible traces of special unitary
matrices of size d x d fill in the d-hypocycloid with one cusp at (d,0).

d=3 d=5 d=8



Qutrits

A special 3 x 3 unitary U is chaotic —

trU e (% e™/18 Hypocycloid(3) U % e /18 Hypocycloid(3))

tr U characterizes the eigenvalues of U = trace condition is sufficient
(again)
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Necessary trace condition for chaoticity

In every dimension d: traces of special chaotic unitaries fill in the union of
d-hypocycloids that are rescaled (by 1/v/d) and rotated. Rotation factors
are related to the equivalency classes of complex Hadamard matrices.

All possible traces of: special unitaries, special chaotic unitaries



Necessary trace condition for chaoticity
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are related to the equivalency classes of complex Hadamard matrices.

4.

All possible traces of: special unitaries, special chaotic unitaries



Necessary trace condition for chaoticity
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Necessary trace condition for chaoticity

In every dimension d: traces of special chaotic unitaries fill in the union of
d-hypocycloids that are rescaled (by 1/v/d) and rotated. Rotation factors
are related to the equivalency classes of complex Hadamard matrices.

4 -5

All possible traces of: special unitaries, special chaotic unitaries



Multiple qubits

Up := diag(e'?/?,e71%/2) for 0 € [0, 7]

For every ne N: Ug,@" is chaotic <= Ujp is chaotic

For every neN: U, ® I$"! is chaotic

lim LHY(Uy @ I3 1) = 1520 In2

n—oo




U eU(CY) is called stubbornly chaotic if U®I%" is chaotic for each ne N.J

Necessary condition: U is stubbornly chaotic = trU =0. )

In dim 2 and 3 this condition is also sufficient.
In dim 2 and 3 there are unique (up to a phase) stubbornly chaotic unitaries:

diag(1,-1) and diag(1, e2™/3, &*mi/3)

=2

Traces of special operators: unitary, chaotic, stubbornly chaotic



non-projective measurements: two sources of randomness

Quantum dynamical entropy of U with respect to any rank-1 POVM I1:
den(Uan) o= H(Uvn) - H(Han)

— Y Y

entropy due to total entropy due to
unitary dynamics entropy measurement

Quantum dynamical entropy of U (independent of measurement):

H%’VM(U) i= sup {Hgyn(U,M): Mis a rank-1 POVM}

@ —Ind < Hgyn(U,M) <Ind
@ 0 < HX,(U) < HY(U) <Ind;
@ HYS(U)=Ind iff HYR (U)=Ind

@ In dim 2 we have H/%]VM(U) = Hg{/nM(U) for every U.
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