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1 A d-dimensional quantum system subject to successive

measurements.

2 Between each two measurements the system undergoes deterministic

time evolution described by a unitary operator U.

3 There are k possible measurement outcomes.

4 We want to quantify the irreducible randomness of the sequences

of outcomes.
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For an input state ρ, a unitary U, and a POVM Π = {Π1, . . . ,Πk}:
the probability of obtaining the result i : pi(ρ)

= tr(ΠiUρU
∗)

the post-measurement state (if the outcome i has been obtained):

Fi(ρ)

=
√

Πi UρU
∗
√

Πi

tr(ΠiUρU∗) (generalized Lüders instrument)

Partial Iterated Function System (PIFS) generated by U and Π.
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⇒ We get a Markov chain on quantum states.

⇒ Process induced by FU,Π on {1, . . . , k} need not be Markovian.

⇒ Probability of outputting the string of outcomes (i1, . . . , in):
pi1,...,in (ρ) = pi1(ρ)pi2(Fi1(ρ)) ⋅ . . . ⋅ pin(Fin−1 . . .Fi1(ρ)).

⇒ Evolution of Dirac delta measures on quantum states:

Ψ∶ δρ z→ ∑
i=1,...,k
pi(ρ)>0

pi(ρ) δFi(ρ).



n-th partial entropy:

Hn ∶=
k

∑
i1,...,in=1

η (pi1,...,in (ρ∗)) where η(x) ∶= {
−x ln x x > 0

0 x = 0

Quantum dynamical entropy of U with respect to Π:

H(U,Π) ∶= lim
n→∞

Hn

n
= lim

n→∞
(Hn+1 −Hn)

Blackwell integral formula (1957):

H(U,Π) = ∫
S(Cd)

H1 dµ∗

where µ∗ is the *- limit of (Ψn(δρ∗) ∶ n ∈ N).

Shannon (1948), Kolmogorov (1958);
Srinivas (1978), Pechukas (1982), Beck & Graudenz (1992) - for projective
measurements; Sªomczy«ski & �yczkowski (1994) - for generalized measurements;
Crutch�eld & Wiesner (2008) - entropy rate



rank-1 POVMs

Let Π consist of k one-dim (rescaled) projections: Πi = d
k ∣ϕi ⟩ ⟨ϕi ∣

Probabilities in the �rst step: pi(ρ∗) = 1
k

Post-measurement state: Fi(ρ) = ∣ϕi ⟩ ⟨ϕi ∣ for every ρ and i

Probabilities in the subsequent steps: pj(Fi(ρ)) = d
k
∣⟨ϕj ∣U ∣ϕi ⟩∣

2

⇒ µ∗ is uniform, H(U,Π) = 1
k

k

∑
i ,j=1

η (d
k
∣⟨ϕj ∣U ∣ϕi ⟩∣

2)

F1, . . . ,Fk are constant: one symbol ∼ one quantum state.

The process on {1, . . . , k} is a Markov chain.
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rank-1 PVMs

Π = projections on an orthonormal basis of Cd

H(U,Π) = 1
d

d

∑
i , j=1

η (∣⟨ϕi ∣U ∣ϕj⟩∣
2)

Quantum dynamical entropy of U (independent of measurement):

Hdyn(U) ∶=max{H(U,Π)∶ Π is a rank-1 PVM}

=max
(ϕj)dj=1

orthonormal
bases of Cd

1
d

d

∑
i , j=1

η (∣⟨ϕi ∣U ∣ϕj⟩∣
2)

Hdyn(U) depends only on the eigenvalues of U;

Hdyn(U) = Hdyn(e iϕU) for ϕ ∈ R;
0 ≤ Hdyn(U) ≤ lnd .



Qubits

Uθ ∼
⎡⎢⎢⎢⎢⎣

e
θ
2

i 0

0 e−
θ
2

i

⎤⎥⎥⎥⎥⎦
θ ∈ [0, π] is the smaller angle

between the eigenvalues of Uθ

Hdyn(Uθ)=
⎧⎪⎪⎨⎪⎪⎩

η (1+cos θ
2

) + η (1−cos θ
2

) θ ≤ π
2

ln2 θ ≥ π
2



We say that a unitary U ∈ U(Cd) is chaotic i� Hdyn(U) = lnd .

The following conditions are equivalent:

1 U is chaotic;

2 there exists an orthonormal basis {ϕi}di=1 of Cd such that

{ϕi}di=1 and {Uϕi}di=1 are mutually unbiased;

3 there exists an orthonormal basis {ϕi}di=1 of Cd in which√
d U is represented by a complex Hadamard matrix, i.e.,

∣⟨ϕi ∣U ∣ϕj⟩∣ = 1√
d

for each i , j = 1, . . . ,d .

Simple necessary condition: U chaotic Ô⇒ ∣ trU ∣ ≤
√
d .
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special unitaries,

special chaotic unitaries
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Traces of special unitaries

Theorem (Charzy«ski et al. 2005). All possible traces of special unitary

matrices of size d × d �ll in the d-hypocycloid with one cusp at (d ,0).
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Qutrits

A special 3 × 3 unitary U is chaotic Ô⇒

trU ∈ ( 1√
3

eπi/18Hypocycloid(3) ∪ 1√
3

e−πi/18Hypocycloid(3))

trU characterizes the eigenvalues of U ⇒ trace condition is su�cient

(again)
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Necessary trace condition for chaoticity

In every dimension d : traces of special chaotic unitaries �ll in the union of

d-hypocycloids that are rescaled (by 1/
√
d) and rotated. Rotation factors

are related to the equivalency classes of complex Hadamard matrices.

All possible traces of: special unitaries, special chaotic unitaries
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Multiple qubits

Uθ ∶= diag(eiθ/2, e−iθ/2) for θ ∈ [0, π]

For every n ∈ N: U⊗n
θ is chaotic ⇐⇒ Uθ is chaotic

For every n ∈ N: Uπ ⊗ I⊗n−12 is chaotic

lim
n→∞

1
nH

dyn(Uθ ⊗ I⊗n−12 ) = 1−cos θ
2

ln2



U ∈ U(Cd) is called stubbornly chaotic if U ⊗ I⊗nd is chaotic for each n ∈ N.

Necessary condition: U is stubbornly chaotic ⇒ trU = 0.

In dim 2 and 3 this condition is also su�cient.

In dim 2 and 3 there are unique (up to a phase) stubbornly chaotic unitaries:

diag(1,−1) and diag(1, e2πi/3, e4πi/3)

Traces of special operators: unitary, chaotic, stubbornly chaotic



non-projective measurements: two sources of randomness

Quantum dynamical entropy of U with respect to any rank-1 POVM Π:

Hdyn(U,Π)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
entropy due to

unitary dynamics

∶= H(U,Π)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶

total

entropy

− H(I,Π)
´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¶

entropy due to

measurement

Quantum dynamical entropy of U (independent of measurement):

Hdyn
POVM(U) ∶= sup{Hdyn(U,Π) ∶ Π is a rank-1 POVM}

1 − lnd < Hdyn(U,Π) ≤ lnd

2 0 ≤ Hdyn
PVM(U) ≤ Hdyn

POVM(U) ≤ lnd ;

3 Hdyn
POVM(U) = lnd i� Hdyn

PVM(U) = lnd

4 In dim 2 we have Hdyn
POVM(U) = Hdyn

PVM(U) for every U.
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