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A conceptual analysis of the classical information theory cf Shannon (1948) shows 

that this theory cannot be directly generalized to the usual quantum case. The reason is 

that in the usual quantum mechanics of closed systems there is no general concept of joint 

and conditional probability. Using, however, the generalized quantum mechanics of open 

systems (A. Kossakowski 1972) and the generalized concept of observable (“semiotxrv- 

able”, E. B. Davies and J. T. Lewis 1970) it is possible to construct a quantum infor- 

mation theory bzing then a straightforward generalization of Shannon’s theory. 

1. Introduction 

Information theory, as it is understood in this paper and as it is usually understood 

by mathematicians and engineers following the pioneer paper of Shannon [57], is not 

only a theory of the entropy concept itself (in this aspect information theory is most in- 

teresting for physicists), but also a theory of transmission and coding of information, i.e., 

a theory of information sources and channels. In the case of classical (i.e., non-quantum) 

systems both parts of the theory are closely connected, this connection being actually 

accomplished in probability theory forming a theoretical background of information 

theory. The clue concepts are those of joint and conditional probability which enable to 

formulate the definition of information sources and channels and then of the concept 

of channel capacity which is the most important for Shannon’s coding theorems. In the 

case of quantum systems the probability theory has to be essentially generalized, cf. [4], 

[18], [63], [64], [65], and the concepts of joint and conditional probability appear to be 

very specialized, i.e., cannot be defined for the general case, except in principle for the 

trivial case, i.e., for the commuting observables; for details cf. [63]. This circumstance 

caused that when it was necessary to consider communication problems for the needs of 

quantum electronics and optics, this had to be done by other means, not those of Shannon’s 

information theory, e.g., by the so-called signal detection theory, cf. [24], [25], by Fourier 

analysis methods, cf. [13], [14], or by combination of these methods with some other 

heuristic physical arguments, cf. [21], [61], [36]. Finally, however, it has been realized that, 

because of the lack of the quantitative concept of information in these methods, they 
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cannot fully answer the practical needs. The existing solutions of information problems 

were only partial or special, cf. [.58], [59], [42], [44], and it was felt that some rather radical 

generalization of the theoretical frame of quantum probability theory is needed. Of course, 

to do this we have actually to generalize the quantum mechanics itself. Recently it has 

been realized that the conventional quantum mechanics, although probabilistic “from the 

beginning”, is not a general quantum probabilistic theory, i.e., it describes dynamical, 

but not stochastical processes in a closed (isolated) system. The only stochastic element 

in the theory is connected with considering the outside measuring instrument, macro- 

scopical in character, which introduces an unexpected disturbance of the system called 

a “reduction of the wave packet”. This reduction can be predicted only statistically as 

has been recognized by Max Born in his statistical interpretation of quantum mechanics. 

When a result of the measurement is given, the quantum description is interrupted and 

we have to begin it anew with a new wave function (quantum state). Thus quantum 

mechanics describes only a physical process (time evolution of the state) between two 

consecutive measurements, it cannot cross the measuring process itself to the next ones. 

Therefore, we cannot speak about a quantum stochastic process (consisting of a sequence 

of random measurements or random events) in the frame of the usual quantum mechanics. 

The only extrapolation of this theory known in literature was the so-called “principle of 

repeatability” of von Neumann [67] which says that an immediate repetition of a meas- 

urement gives the same result. It was felt, however, that this principle is too special 

and it was frequently discussed and criticized, cf. [43], [19], [12]. 

The foundations of a new “stochastic” quantum mechanics of open systems was laid 

from two independent sides. On the one hand, in 1961 E. C. G. Sudarshan, P. Mathews 

and J. Rau published a paper [60] in which they formulated the first general idea of 

“stochastic quantum dynamics”, rather in connection with elementary particles physics. 

Independently, in 1972 A. Kossakowski formulated a more specific theory of quantum 

“dynamical semigroups” or non-Hamiltonian quantum statistical mechanics of open 

system [39], cf. also [32], based on the theory of Banach spaces and motivated rather 

by the laser theory. On the other hand, since the famous experiments of Hanbury Brown 

and Twiss of 1954 [23] a new field of “photon statistics” appeared and quickly developed, 

cf. [7], [37], intensified by the invention of lasers and all “quantum electronics” and 

“quantum optics”, as well as by Glauber’s idea of “coherent states” [16]. E. B. Davies [6] 

rightly recognized that for describing such processes as photon counts, etc., a new general- 

ized theory of quantum stochastic processes is needed and he formulated such a theory, 

cf. also [8], [7], where a generalized concept of observable, as well as that of “instrument”, 

and generalized theory of repeated measurements have been given. 

The fact that Davies’ concepts and theorems are fundamental for the construction 

of quantum information theory has been realized by A. S. Holevo [27], [28]. He has 

shown how to solve with these tools some quantum information problems, and explained 

also the connection of Davies’ theory with Glauber’s method of coherent states. Holevo 

did not formulate, however, any general scheme of quantum information theory as a gen- 
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eralization of Shannon’s theory. The purpose of the present paper is to give such a general 

scheme. 

2. Basic definitions and notation 

Let us associate, as usually, with a quantum system a complex separable Hilbert 

space &‘. Elements of X will be denoted by x, y, z, . . . , and the scalar product in % by 

(*, . ). Let L’(S) be the real Banach space of self-adjoint trace class operators on 2. 

Elements of L’ (2) will be denoted by e, b, X, . . . , and the (trace) norm by 

lIeIll := sup 2 1(X”, er.)l, (2.1) 
{snlil‘n) n-l 

where {x”> and {y,} are any complete orthonormal bases in X’, cf. [15], [39]. The positive 

cone in Ll(Z’), i.e. the set of all positive definite operators from L’(2), will be denoted 

by L:(z). 

We remark that 

for all Q EL:(P): 11~11~ = Tre, (2.2) 

for all Q E L’(.#): llelll = Trlel := Tr(?*e)‘/’ 

= Tr (~~)*1~. (2.3) 

The Banach space L’ (2”) is the least linear space in which the convex set 

/!I(%) :L {Q E L:(z): ll@lll = l} (2.4) 

of all states (mixed states, normal states, density operators) is embedded. 

The set of all real-valued continuous linear functionals on L’(X), (A, Q), Q E L’(X), 

is called the dual space to L1 (9’) and will be denoted by L”(2) : = L1 (&‘)*. Accordingly, 

we introduce the dual coue L?(Z) in L”(P) as the set of all .elements A E L”(Z) such 

that (A, Q) B 0 for all Q E L:(P). Since it is known [lo] that any real continuous linear 

functional on L1(S’) can be presented in the form 

<A, p> = Tr(Ao), Q E L’(P), A E B(P), A = A”, (2.5) 

where B(X) is the Banach space of all bounded linear operators on .%‘, we see that 

L:(Z) consists of all positive definite bounded linear operators on 2, i.e., is a positive 

cone in La(Z). We remark that, if %’ is infinite-dimensional, L’(P) is not reflexive, 

i.e., L’(#)** # L’(%), we can only write L1(3f’) c Ll(S)** = L”(2)* by the so- 

called canonical embedding. 

On the other hand, we may generalize (2.4) to 

J(Z) := {@ EL:(#): 0 < ll@lll < l} (2.6) 

called the set of incomplete or partial states (in particular, those with llelll = Tre < 1); 

cf. [51], p. 460. 
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The dual space L”(P) is only a proper part of the set S(X) of all observables on X 

or of self-adjoint, not necessarily bounded linear operators on .F defined by their spectral 

representations 

+ ‘m 

A = s ia(di,), (2.7) 
--co 

where a(. ) is a spectral measure on the real axis R. We recall that a spectral measure 

on R can be defined as a function a: S?(R) + B(S) (where B(R) is the Baire algebra’ 

on R) such that 

(1) a(E) 3 0 for all E E &I(R) (positivity), (2.8) 

(2) a(nG, En) = n$I a(~‘%) for all {En):zl c S?(R) such that 

E,,nE,, = 0 for all n # 111 (o-additivity), (2.9) 

(3) a(R) = I := identity operator on Z’ (normalization), (2.10) 

(4) (o(E))~ = a(E) for all E E B(R) (projectivity*), (2.11) 

The dual space L”(P) is a Banach space with the (operator) norm 

(2.12) 

where ]]x]]’ := (x, x) for all x E 2. 

If T is a linear operator on L1 (2) (called a superoperator on SF”>, we define its norm by 

IlTll, := SUP IlTdl. (2.13) 
l,eqI=r 

We denote the set of all linear operators on and into L*(Z) by K(Z), and the set of 

all bounded linear operators on L’(X), which is a Banach space with the norm (2.13), 

by L”(Z). To every T E L’(Z) there corresponds one and only one linear operator T* 

on L”(P) called the dual superoperator to T and defined by the identity 

(A, T!, = c~ T*A , p> for all A E Lm(X) and all ? E L’(P). (2.14) 

We have [71] 

IIT”II, := ,iAyy IIT”All, = IITII,. (2.15) 
1 

All dual superoperators T’@ to any T E L’(P) form the second dual space L”(X) being 

a Banach space with the norm (2.15). 

’ The Baire algebra, and not the (natural) Bore1 algebra as usual, is taken here only for mathematical 

convenience. The Bsiw algebra on R is the least g-algebra containing every compact set which is the inter- 

section of a countable number of open subsets of R. The Baire algebra on the compactified real axis R 

coincides with the Bore1 algebra on R; cf. 1711, p. 18. 
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A superoperator T E K(S) mapping I,:(.%) into itself and such that 

IlTell~ = llell, for all p E L:(X) (2.16) 

is said to be a positive linear endomorphism of L”(X) or a positive superoperator on 8, 

cf. [39]. A positive linear endomorphism T of L’ (2) maps 3 (,X) into itself, is a contract- 

ing operator, i.e., 

1lTdl1 d lIdI, for all Q E L’(.%?), (2.17) 

and satisfies the relation 

Tr(Te) = Tre for all Q E L’ (2) , (2.18) 

cf. [39]. Iff a superoperator T E K(X) maps L:(Z) into itself and satisfies only (2.17), 

we shall call it an incompletely (partially) positive linear endomorphism of L’(X) (in- 

completely positive superoperator on 2). It maps J](H) into itself. 

3. Quantum information 

Let us consider an arbitrary state Q E .4(#). Since 0 as an operator is completely 

continuous (compact), positive definite and with unit trace, it has a purely point spectrum 

{P,,iFzI such that 

‘I 

Pn B 0 for all n EN = {I, 2, . ..I. 
c 

PII = 1 3 (3.1) 
“=l 

cf. [15]. Denoting the eigenvectors of Q by x,, (x,,, x,,) = O,, (Kronecker’s delta), we 

may write 
z 

px = 
c 

P&X, X,,)X” for all s E 8 (3.2) 
n=l 

or 

OCI 

0 = 
c 

P.P., where P, := (.,x,)x,, nEN. (3.3) 
n=l 

P, are projectors on one-dimensional subspaces of &“, 

Pi = P,, P” >, 0, TrP, = 1 (n E N) 9 (3.4) 

and are called pure states (represented also by vectors x,). 

Van Neumann, [66], [67], V.2, introduced the concept of entropy (information) of 

a quantum (mixed) state e (3.3) as 

H(e) := -Tr(Qlnp) = - 
c 

P,tnP,. 
n=l 

(3.5) 

Since all terms in the sum (3.5) are non-negative (we put 0. In0 := O), 0 < H(e) < co 
when the sum is convergent or H(c) = +co when it is divergent. We call a state c with 
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a finite H(Q) thermodynamically regular, one with infinite H(e) thermodynamically ir- 

regular. We see that all pure states have 0 entropy, 

H(P,) = 0 for all n EN. (3.6) 

Conversely, if entropy H(p) = 0, Q is a pure state. Each pure state is, of course, 

thermodynamically regular. If ti is finite-dimensional, every state is thermodynamically 

regular. 

The existence of thermodynamically irregular states for general Z’ is a rather un- 

pleasant feature, the more that they form a set of the second category in .A(.%), while 

the set of regular states is meager or of the first categorll, i.e., is a union of a countable 

family of nowhere dense sets; a set is nowhere dense in a topological space A’ iff the in- 

terior of its closure is void, and it is of the second category’ iff it is not meager in X, cf. [68], 

[69]. This fact is the reason why H(e): /i(Z) -+ R is discontinuous in Q with respect to 

the trace norm (2.1) and is unbounded in every open ball {p E ,A(%‘): Tr (Q -0’1 < F, 

t‘ > 0); cf. [68], [69]. H(Q) is, however, weakly lower semi-continuous in 0, [68], [69], 

and this is, perhaps, sufficient for its physical interpretation. 

The entropy H(Q) is a measure for the degree of “mixedness” of the state e, it also 

measures the information necessary to select an eigenstate of F. But usually we do not 

measure directly 0, but some physical observable A E S(2) in a given state ,o, cf. (2.7). 

Then the probability of finding the result of measurement in a subset E E .8(R) is 

p(A, 0, E) := Tr(ea(E)). (3.7) 

Because of (2.8)-(2.10) we have, as should be, 

P(A, e, E) 3 0 for all E E J(R), p(A,n,R) = 1, (3.8) 

and p(A, _o, E) is n-additive in B(R). If A is thermodynamically regular [31], i.e.. has 

a purely point spectrum 

A = i Aa = 2 ?,,, P,,, a(E) = c P,, for all E E 2(R), (3.9) 
-% ,I= I J.&E 

and there exists a real constant c such that 

(3.10) 

then we can define the entropy (information) of observable A in state c, or A-information 

in state 0 

J? 

I-I,(~) = H(A, 0) := - )7p(A, !,, Ulnp(A, e9 ;*,) 

,I= 1 

Xl 

=- L 1 Tr(pP,JlnTr(pP,), 
n=l 

(3.11) 
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cf. [33] (where only pure states were considered). Thus there exists a non-empty class 

n.(X) c d(S) that 

WA, e) < a for all A E S,,(Z) and all 0 E n,(X), (3.12) 

where S,,(S) c S(X) denotes the set of all thermodynamically regular observables. In 

the following we shall assume that all the states considered for measurement of an ob- 

servable A E S,,(S) belong to n.(X).’ 

An example of a thermodynamically regular observable is the energy of a linear 

harmonic oscillator of frequency CO and mass m = 1 with the spectrum 

I., = (n + #co (n = 0, 1 ) 2, . ..). (3.13) 

If we take for e the Gibbs ensemble with temperature T, i.e., we put in (3.3) for .r, the 

eigenvectors belonging to 1, (3.13) and 

pn = (I -p-a)e-zn (n = 0, 1, 2, . ..). (3.14) 

where CI is the dimensionless constant 

(3.15) 

(as usually, h denotes Planck’s constant and k Boltzmann’s constant), we easily obtain 

Then 

~0, n, A) = TrV,,n) = pn (n = 0, I, 2, . ..). (3.16) 

H(A, 0) = H(o) = -ln(l -c-“)+cte-“(I -eWa)-‘. (3.17) 

The first term of (3.17) is identical with the maximum information when mean energy 

of the oscillator is fixed in the class of pure states as calculated in 1331, equation (95), 

while the second term is the addition to this expression when we maximize in the class 

of all mixed states. Denoting 

H,(U) := -ln(l -emu), H2(C() := !&“(I -e-,)-l (3.18) 

and their sum by H(U), we have 

l$ II/(CX) = lim H, (a) = co, limH,(cc) = 1, 
U&O n ; 0 

lim H(E) = lim H,(U) = lim H,(a) = 0, 
ntm (1 t 03 ntm 

(3.19) 

z Note added in the proof: In the following paper of the author (this issue, p, 131) another more 
elegant approach is proposed in connection with the generalization of the Kolmogorov-Sinai entropy 
to the quantum case by E. Sr+siada (this issue, p. 129). 
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while 

(3.20) 

Both functions, H,(x) and HZ(%), are positive and strongly monotonically decreasing, 

when IY increases from 0 to co, and they are equal, H, (c() = H,(Y) for 

CY = x0 2 0.7; (3.21) 

cf. Fig. 1. Since H, (CC) prevails for CY 6 1 (much smaller than 1) or hm @ kT, i.e., in the 

classical region, H, can be called the classical part of H. Analogously, since Hz prevails 

for CY 9 1 (/WI 9 kT) or in the quantum region, H, can be called the yzrmturn part of H. 

Generalizing (3.17) we remark that if A =,fip) and hence for .Y E D,, (the domain of ,4) 

[A, 0]x := (A<)-[>/4)X = 0, (3.22) 

we can choose for .I-,~ in (3.3) as a development of 0 the eigenvectors of A and therefore 

H(A, o) = H(F). \ (3.23) c 

If A and 0 do not commute, H(.4, p) and H(y) can be different, 

H(A, 11) 3 H(p) (3.23~1) 

(0. Klein’s theorem). 

, 

* 
0 (I Iii I -3 ,I 

I t l(~l<l\\lL‘ll IIlllIIJ (L,ll.llllUI11 lllllll, I t 0 

Fig. I. Classical part H, and quantum part Hz of information H 

of energy of a linear harmonic oscillator and the Gibbs ensemble 

as functions of inverse temperature 
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There are generalizations of the quantum entropy concept, cf. [55], [56], [22], [54], 

corresponding roughly to the relative and continuous entropies in the classical case, as 

well as axiomatic approaches to this concept, cf. [31], [49]. For the purposes of the present 

paper, however, we do not need these constructions. 

4. Classical information channels 

For the convenience of the reader and easier understanding we briefly recapitulate 

here the essential points of the classical Shannon information theory of communication 

channels with discrete messages [57], [33], [1 11, [70], [3], [26]. There is also a generaliz- 

ation of this theory for continuous messages by Kolmogorov [38] and Dobrushin [9], but 

for the sake of simplicity we do not go here into this generalization (its quantum counter- 

part would require the general concept of quantum entropy mentioned at the end of the 

previous section). 

We use Kolmogorov’s scheme of classical probability space (Q, :%?(a), p), where 9 

is a set of elementary events, g(Q) a b-algebra of subsets of Q (algebra of events, usually 

the Baire or Bore1 algebra on Q), and p a probability measure on g(G). Let Z be the 

set of all integers { . , - 1 , 0, 1, 2, . ..}. We consider the usual block scheme of an in- 

formation transmitting arrangement, cf. Fig. 2, as composed of an input source, a channel, 

an output source and a noise source (the latter representing the surroundings giving 

undesired information). The channel and noise are treated together by means of the 

so-called double source input-output and by taking the supremum over the input, as will 

be explained below. 

I 
I pq / 

‘-------~-~~~________1 
Fig. 2. The block scheme of an information transmitting arrangement 

We assume that each unit of time3 (second, microsecond, etc., depending on the 

arrangement), t E Z, in the input and output sources some objects (called symbols or 

letters), taken from a given finite set called alphabet, appear with some given probabilities. 

We have the following scheme: 

3 Time is only one of possible interpretations of the parameter t. In optical instruments where optical 

images are transmitted, f may be considered as a spatial coordinate (or coordinates), cf. [20]. Thus 2 

may be generalized to the many-dimensional array Z” = 2x . x 2 (n times). 
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Concept 

Alphabet 

Set of sequences of 

n E N letters (n-MW&) 

Set of doubly infinite 

sequences of Z-Irord.5 

Probability measure 

of n-words 

Probability measure on 

Z-words 

Information of Iz-words 

Input 

A = {xx, . . . . x.: 

Q/1 - 
(n) _ /$I = Ax _,. XA 

,I 

.Q4 = AZ 

Information of Z-words 

per one letter 
H(A) = lim -’ I-I.(A) 

n -,J’ I? 

output 

f$’ = B" = Bx ._. x B 

PI 

f2, = BZ 

pe on :#(Q,) 

H (B) of pf;’ II 
analogously 

1 
H(B) = lim H,(B) 

n+m n 

We see that the difficult problem how to calculate information of pa and y, (the 

latter are actually continuous probability measures since !2’a and Q, are not denumerable) 

is here avoided by taking the limits of n-‘t/,(A) and K’H,,(B) for n + GO. These limits 

exist when p$“’ and pg) are stationary, i.e., are invariant with respect to the shift in t, as 

we here assume. We remark that if all letters in each n-word (a,, . . . , a,) E A” are 

stochastically independent, i.e., 

&yu, ) . ..) 4 = pjil’(a,) . p~~‘(a,,) for all t7 E N, (4.1) 

we obviously obtain 

H,,(A) = nH,(A) and H(A) = H,(A), (4.2) 

and analogously for B. Thus the problem of calculating information H(A) of a source A 

is not trivial only if there are statistical correlations between letters in words and ~2) 

for n > I is not determined by pj;)2)’ s with 177 < n (of course, converselly, all ~5~)‘s are 

determined by pj;) with n > m as the so-called marginal probability measures). Thus we 

have non-trivial information of a source if there are non-trivial (not factorizing) joint 

probabilities p$” of letters in an n-word for n > 1. 

The double source is a source with the alphabet C = A x B of pairs (a, b), a E A, 

b E B. We define as above the corresponding Qp), Q,, p:), pc, N,(C) and H(C) = 

H(A x B). Also here if the sources are stochastically independent, i.e., 

/$‘(a, b) = p$“(a)ph”‘(b) for all a E L&‘) b E 0 --I;) and all tz E N, 

we have the additivity of information 

H(A x B) = H(A)+ H(B). 

(4.3) 

(4.4) 
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In the general case, however, when correlations between A and B occur, we have only 

the subadditivity 

H(A x B) < H(A) + H(B). (4.5) 
Therefore, 

R(A, B) := H(A)+H(B)-H(A x B) >,O. (4.6) 

Since R(A, B) vanishes when there is no informational connection between A and B, 

R(A, B) is a good measure of the transition of information from A to B (or conversely) 

called transinformation (synentropy) or information rate per letter or per unit of time 

used, e.g., per second, etc. Expression (4.6) is symmetric in A and B, but when we intro- 

duce conditional information, cf. [26], 

H(A ) B) = information of A under condition B : = H(A x B)-H(B), (4.7) 

H(B 1 A) = information of B under condition A : = H(A x B) - H(A), (4.8) 

we obtain the asymmetrical expressions for information rate 

R(A, B) = H(A)-H(AIB) = H(B)-H(BIA). (4.9) 

The second terms on the right-hand sides of (4.9) can be interpreted as a measure of the 

noise in the channel, H(A 1 B) for direction A -+ B and H(BI A) for direction B --f A. 

They vanish when the channel is- noiseless (no loss of information, translation), and are 

equal to H(A) or H(B), respectively, when the noise is total (the stochastic independence 

of sources A and B) and no information is transmitted through the channel. 

We obtain a real asymmetry and characterization of A as the input of information 

if we introduce Shannon’s definition of channel capacity which is a property of the channel 

itself and not also of the source A (B being now considered as depending on A) 

%:=supR(A,B)=supR(A,B)>,O. (4.10) 
H(A) PA 

The channel capacity is a key concept of the celebrated Shannon coding theorems, 

cf. 1351, [70], saying roughly that if H(A) < %“, we can choose such a code, i.e., a noise- 

less channel translating the messages (words) expressed in alphabet A into messages in 

some alphabet A’ such that the given channel works then practically also as a noiseless 

one, i.e., translates with any prescribed accuracy (arbitrarily small probability of distor- 

tion) the messages in alphabet A’ into messages in some alphabet B’ from which they 

can be again translated into alphabet B (decoding), cf. Fig. 3. (In this approximate formu- 

lation we omitted the conditions that the input source should be ergodic and the channel 

non-anticipating and with finite memory, cf. [35].) Thus the negative influence of noise 

can be practically eliminated by an appropriate choice of code if H(A) < %?. 

For calculating %’ in a special example of practical importance4 Shannon assumed 

in [57] that the input message (signal) and the noise are stochastically independent, that 

the signal is contained in a frequency band W = m/2x and a time interval z (then by 

4 Actually this example has continuous messages, but they can be approximated by discrete ones. 
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Fig. 3. Scheme of Shannon’s coding theorems 

the so-called .van?pfin~ theorem it is defined by 2 Wt numbers), and that the probability 

measures for signal and noise are of the Gaussian type with powers S and N, respectively. 

Then 

%=Wln l+ 
S‘ 

i ! N ’ 
(4.1 1) 

i.e., the channel capacity is determined by the frequency band width W and the signal- 

to-noise ratio S/N (for other heuristic derivation of this relation cf. [50]). 

Recapitulating this simplified summary of classical information theory we can state 

that it is critically dependent on the concept of joint probability since I)?), ,&‘) (II > 1, 

n EN), $Jre (n EN) define H(A), H(B), and H(A x B). Alternatively, conditional proh- 

ahihtics 

may be used instead of pyLB since /-/(A 1 B) can be expressed by $“)(a 16) (4.12), cf. [26] 

and Section 7 below. But, as we see, joint probabilities are needed for H(A) and H(B) 

and, according to (4.12), joint probabilities determine conditional probabilities. 

5. Why quantum informdion theory? 

We have seen in Section 3 that for x * I or fico $ kT information of the energy of 

an oscillator in thermal equilibrium has a quantum part which prevails definitely over 

the classical part. Now we are interested how the information capacity of a quantum 

channel, e.g., electromagnetic one, should behave for E + co or T + 0. If we assume 

for the moment that the Shannon formula (4.1 I) is correct also in the quantum domain, 

we may insert into it for comparison the classical and quantum expressions for noise N 

as function of temperature, and then go over to T = 0. In the classical case we have the 

well-known Nyquist formula for noise [48], cf. [5], Chap. 1 I, 

N = KkT (K > 0), (5.1) 

where K is some constant connected with the friction in the system. In the quantum case 

to get some estimation we can either generalize (5. I) by putting in place of kT the Planck 

expression for the mean energy of a photon in the black body electromagnetic radiation, 

cf. [5] 11.3, 

N = Kho~(~~- I)-‘, (5.2) 
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or use for N simply the fluctuation (standard deviation) of photon energy in the black 

body radiation, cf. [40], p. 427, [52], 

N = h10e-a/2(ex- l)-‘. (5.3) 

In both cases we obtain essentially the same limit as in the classical case (5.1), i.e., 

lime = co (5.4) 
T-0 

if we assume that W and S in (4.11) are independent of T.5 This result seems to be in- 

correct in the quantum limit. Indeed, independent calculations for some special quantum 

0 I 2 3 u- 
5 

Fig. 4. Relative channel capacity v/W as function of the “thermal” 

relative noise N/S and the “zero quantum” relative noise No/S accord- 

ing to formula (5.5) 

5 We remark that if we take for our system not the whole electromagnetic field in thermal equilibrium, 

but only one oscillator in thermal state as in Section 3, we also obtain the same result. Then, namely, 

although the mean energy gives for T+ 0 a finite limit Iho (“zero energy”), the energy fluctuation 

vanishes at T = 0 as u-a for c( -f a. 
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models [21], [27] show that in the quantum case the Shannon formula (4.11) should be 

rather modified to the form 

(5.5) 

where A’,, is a positive constant, as if a “zero temperature fluctuation” or “zero quantum 

noise”. Then we would have 

(5.6) 

i.e., the capacity is bounded from above as we can expect (for T - ‘x3, Gf + 0 strictly 

monotonously, cf. Fig. 4). 

We see from the above short discussion of the present situation that a new quantum 

information theory is really desirable. The old theory cannot be improved only by in- 

serting into it some quantum formulae, as we have tried to do. The question has, namely, 

a much deeper origin, i.e., the existence of a different probability theory for the “non- 

commuting” case. 

To complete our answer to the question in the title of the section we shall indicate 

where the “quantum land” is situated. For radiation systems in thermal equilibrium the 

“quantum border” is determined by the condition rl = 1 or hr~ = kT which gives the 

critical circular frequency 

or the critical wave length 

(c is the velocity of light), cf. Table 1. 

I 
Critical 

Temperature 

T(K) 
Example 

circular 

frequency 

3 

300 

3000 

30000 

3. lob 

1~ 
liquid helium 4. 10” 

room 4. 10’3 

temperature 

thermal electric : 4. IO” 

lamp 

sun surface 4. IO’S 

sun centre and 4 ’ lOI 

atomic bomb , 

TABLE 1 

Critical 

wave 

length 

&cm) i 

5.;0-3 

5. 10-S 

5. 10-b near infrared light 

5.10-7 visible light 

5. 10-y soft X-rays 

(5.7) 

(5.8) 

Spectral 

region 

.millimeter micro- 

waves 

infrared light 
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We see that for all practically important temperatures of equilibrium radiation the 

radio waves and the long microwaves belong to the classical region, while the short 

microwaves (in low temperatures) and infrared and visible light (in normal and high 

temperatures) belong to the quantum region. Thus the recently progressing shift of com- 

munication devices from the radio frequencies to the light frequencies (lasers) is a passage 

across the border of the quantum domain, this Alice’s wonderland of physics, as well 

as mathematics. The passage is only accelerated by the fact that lassers are far from the 

Gibbs thermal equilibrium (their “generalized equilibria” are usually determined by the 

negative absolute temperature [21] or by the so-called higher order temperatures [29], 

[2]). Indeed, many facts of experiment and theory show that in the field of “quantum 

electronics” or “quantum optics” the quantum and at least semi-quantum laws begin 

to govern.6 Thus the quantum information theory is not only a scientifically interesting 

subject, but it is a practical need. 

6. Semiobservables, instruments, and expectations 

As we have said in the introduction, for closed quantum systems no general concepts 

of joint and conditional probability exist and, therefore, no information theory (to be 

precise, no theory of transport of information, no theory of communication) can be 

constructed, at least on Shannon’s lines. This is, however, natural. A closed system cannot 

communicate with the surroundings, in particular, a technical device intended for com- 

munication cannot be controlled, or “pumped” longer from outside and cannot give 

any “message” to the outside world. In other words, no closed system can be an “input” 

or an “output”. To be more rigorous, closed quantum systems can contact with the out- 

side world at most twice: during their “preparation” and their “measurement” (in the 

theory both acts are idealized as momentary, of no duration). Such single acts are not 

sufficient for an information channel, which has to work constantly, in discontinuous 

or continuous way. 

The other point which should be emphasized is that the contact of a communication 

device with the outside world has to be of a stochastic nature. Indeed, the point is that 

the message is not fixed in a deterministic way. If it were fixed, it would be no message 

at all since it would be known beforehand. Thus, not because of any technical reasons, 

but as a matter of principle, the quantum theory of communication should be a stochastic 

theory of open quantum systems. 

As mentioned, such a theory has been formulated by Davies and Lewis [8], and to 

some extent and independently by Kossakowski [39], cf. also [30], [32]. In our presenta- 

6 There are people (as W. E. Lamb) who say that lasers are classical instruments, but such a saying 

has only a limited meaning of stating that lasers are macroscopic systems and that the classical laws in 

some sense are prevailing in their theory. But it cannot be denied tha.t in many more subtle effects (as 

quantum noise, spiking, spectral characteristics, etc.), as well in a more fundamental theory, the quantum 

laws cannot be neglected. Actually, we have to use there quantum mechanics of open systems, cf. [29], 

which is a semi-macroscopic theory, and not the usual quantum mechanics (of closed systems). 
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tion we shall combine both methods in this sense that to the more abstract formulation 

of Davies and Lewis we shall give a concrete representation as proposed by Kossakowski 

and recapitulated above in Section 2. Then we shall generalize the obtained theory to 

include finite memory effects (more general than in the Kossakowski theory).” 

First of all we shall generalize the concept of quantum observable as a self-adjoint 

operator (2.7), cf. [8]. A self-adjoint operator is uniquely determined by a spectral measure 

defined by properties (2.8)-(2. II). But from the point of view of the theory of probability 

it is only essential that ~(14, c, E) as defined by (3.7) is a probability measure in the 

classical Kolmogorov sense. We easily see that for the latter only the axioms (l)-(3), 

(2.8) to (2.10), are necessary and sufficient, since they guarantee that p is positive (non- 

negative), b-additive and normalized. Thus in a generalized theory axiom (4) (projectivity) 

may be considered as superfluous. If we omit it, however, we lose the I-l-correspondence 

between an operator A and its spectral measure a(E) in (2.7): now to a given A there 

exist many operator measures a(E) such that (2.7) holds. Since only the measure a(E) 

is directly connected with probability p, we have to resign from operators as represent- 

ing observables and go over to bounded operator valued measures a(E) satisfying only 

(2.8), (2.9) and (2.10) and called operator meuswes or semispectral mcusures, cf. [45]. 

Since in general we need many-dimensional spaces of elementary events, J1, it is more 

convenient to formulate our definition in a somewhat more general form: 

DEFINITION 1. Let If be the Hilbert space of a physical system, Q a compact’ to- 

pological space called ruler .spuce and .8(Q) the Baire b-algebra of subsets of Q. A srmi- 

obserwble on .w’ and D or .scmispectru/ measure on d(Q) into B(X) is a function u: 

ti(Q) + B(X) such that 

(1) u(E) z 0 for all EE d(Q) 

in the sense of weak operator 

(3) u(Q) = 1 (normalization). 

(positivitJ,), (6.1) 

mutually disjoint & (the series is understood 

topby) (a-udditivity), (6.2) 

(6.3) 

That a semiobservable has a good physical interpretation for open quantum systems 

can bc inferred from the following theorem due to E. M. Alfsen (private communication): 

THEOREV 1. Let a and b bc sptwtrul utd semispectral measures, rcspectiwl)~, on :29(R) 

into B(X), and let the mean ~~1~rr.s of a am1 b coincide ill ur~y state q E d (If), i.e.. 

(u, ” : = Tr (0 $ iu(t/i.)) = Tr(p 5 Ib(d%)) = : fb, $ = : 1.. (6.4) 
K K 

7 Com~actikation of the value space is very convenient mathematically and has no serious physical 

consequences. E.g., we may compactify R to R not only by one point in infinity, but also by two points, 

R2 not only by one point, but also by a circle or line in infinity, etc., accordingly to the topological prop- 

erty of the physical situation. 
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Then for ull Q 

In other words, the spectral measures on R are distinguished among all semispectral 

measures giving the same mean values by the smallest possible fluctuations (standard 

deviations). This situation corresponds rightly to our concept of physical isolation of 

a closed system: such a system is under the smallest possible disturbances from outside. 

If we allow outside disturbances of different strength, we go over from one observable 

A or a (2.7) to an infinite set of semiobservables b which give the same mean values but 

greater (not smaller) fluctuations. The preservation of the mean values is a generalization 

of the Langevin idea of a stochastic force having the zero mean value but a positive 

fluctuation. 

THEOREM 2 (M. A. Naimark, cf. [27], p. 33). Let a(E) be a semispectral measure 

on a(n) into B(cFii). Then there exists a Hilbert space X0 such that Z-F is its subspace, i.e., 

2 = P-Y?, (6.6) 

(where P is some projector operator on ZO), and a spectral ’ measure a,(E) on 2?(Q) into 

B(Xo) such that 

a(E) = PaO(E)P for ail E E g(g). (6.7) 

Conversely, if a,(E) is a spectral measure on 8(Q) into B(Z",), and SF is a subspace 

of Z,, given by (6.6), then a(E) defined by (6.7) is a semispectral measure on %3(Q) into 

B(x). 

Theorem 2 allows us to show that if we build a semiobservable by means of Glauber’s 

coherent states [16] in Dirac’s notation 

a(E) := 
1 ;’ 

zxzld2z for all E E 2(C), (6.8) 

where C is a compactificated complex plane, a(E) can be considered as a projection (6.7) 

of a spectral measure on g(C) composed of two commuting observables on a bigger 

Hilbert space, cf. [27], also [34]. 

In the case where we measure first an observable A with a pure point spectrum (3.9) 

and then an arbitrary observable 

B = 1 26(d),) 
m 

(6.9) 

* Here by saectral measure we mean a somewhat more general concept than defined by (2X-(2.1 11, 

namely, instead of R we take any compact topological space Q. E.g., if fj = Rn, a spectral measure can 

be built by taking the product of the spectral measures of n commuting observables onx. 

Commutativity of the observables is necessary and sufficient condition that the product be a spectral 
measure. 
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(where b(E) is a spectral measure), semiobservables can be used for construction of con- 

ditional and joint probability measures, even if A and B do not commute, cf. [S], [62], 

[46], [47]. If A is measured on a system in state Q and an eigenvalue 1, is obtained, then 

according to the usual interpretation, cf. [8], [67], p. 214, 1431, [ 191, [ 121, the state is changed 

(6.10) 

When A is measured, but we do not know or are not interested which eigenvalue is ob- 

tained (no selection) we get the transformation 

X’ 

@ t-+Qa := 
c P,pP, =: T/,0, (6. I I ) 
Il=l 

where T, is a positive linear endomorphism of L’(.%‘). T,,, causes that after the measure- 

ment in the domain of A 

[A 3 PA1 = 0, (6.12) 

even when before measurement [A, ?] # 0. Similarly, we can define the conditioning of 

the observable B by the measurement of A 

h,(E) := 2 P,,b(E)P,, = T,b(E) E E S(k). (6.13) 
IL= 1 

Since 

Tr(Qb,(E)) = Tr(?, b(E)) f or ail c E I(Y) and all E E.%‘(R), (6.14) 

the function 

AbA, 0, E) := Tr(@,(E)) (6.15) 

is a probability measure on B(R) and b,(E) is a semiobservable on d(R) into I?(&“). 

Only when [A, B] = 0, b,(E) = b(E) . IS a spectral measure, and the measurement of B 

is not influenced (conditioned) by the measurement of A. We may also define [S] the semi- 

observable 

c(Fx E) : = )l P,b(F) P,, for all E, FE:%(R) 
&El:‘ 

(6.16) 

which can be shown to extend uniquely to c(G) for all G E &?(&) and may be called 

a joint smiobservable of a and b (more precisely, of a followed by b or h following a), 

while 

p(c, 0, G) : = Tr(cc(G)) for all G E B(R’) (6.17) 

is a joint probability tneasure for measuring b following a. We have the marginal measures 

c(R x E) = a(E) for all E E g(R), 

c(Fxk) = b,(F) for all FE d(k). 
(6.18) 
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We remark that the presented procedure cannot be repeated, however, for the third 

measurement even for B with purely point spectrum, expect for the trivial case of com- 

muting A and B. The procedure cannot also be generalized for A with continuous spectrum. 

The deeper reason of these difficulties is rooted in the fact that, in genkral, the product 

of two spectral (semispectral) measures is not even a semispectral one (except for the 

commuting observables). To surmount these difficulties Davies and Lewis [8] defined 

the concept of “instrument”. In our more concrete setting this definition can be formu- 

lated as follows: 

DEFINITION 2. An instrument is a superoperator-valued probability measure, i.e., a 

function b: a’(Q) -+ K(Z) such that 

(1) b(E) > 0 (is incompletely positive) for all E E %9(Q) (positivity), (6.19) 

(2) g( fi E,,) = 2 8(E,) f or mutually disjoint E, E S?(Q) (where the 
n=l II=1 

series is understood in the sense of strong operator topology) (o-additivity), (6.20) 

(3) Tr (QQ)c) = Trp for all e E L:(2) (normalization). (6.21) 

An instrument (semiobservable) is said to be discrete iff its value space SC! is discrete. 

THEOREM 3 [8]. To every instrument G’ on S?(Q) into K(Z) there exists a unique 

semiobservable a on S?(Q) into B(S), called the associated semiobservable with 8, such 

that 

Tr(&(E)@) = Tr(ca(E)) for all 0 E L’(X) and all E E S?(Q). (6.22) 

Every instrument a on B(Q) into B(X) is determined in such a way by at least one 

instrument. 

THEOREl 4 [28]. Let I, and b, be instruments on S?(Q,) and %9(Q,), respectively, 

into K(2). Then there exists one and only one instrument. B,2 = : I, o 8, on g(Q, x -Q2) 

into K(X), called the composition of bI following Q,, such that 

b,,(ExF) = rf,(E)bz(F) for all E e9?(Qn,) and all FE .1?8(f~~). (6.23) 

Generalizing the above concepts (6.13) and (6.16) and following [8], we introduce 

DEFINITION 3. Let 6, and Cz be instruments on S?(o,) and B(a,), respectively, 

into K(2), and a, and a, the associated semiobservables with b, and 8,. Then the semi- 

observable on g(Q,) into B(X) 

al1 (F) : = 8, (R,)*a,(F) for all FE tiB(Qn,) (6.24) 

is said to be the semiobservable a, conditioned by the measurement of u, with the in- 

strument c?~. The semiobservable crl(G) on g(n, x Q,) into B(Z) associated with the 

composition b, 0 (5”, is said to be the joint semiobservablc of a, measured by instrument 
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b, following a, measured by instrument b, (and for the reverse order of the measurements 

cr2(G) associated with 8, o a,). Iff 

b, 0 G2 = G, 0 G, (and, therefore, c, 2 = c,,), (6.25) 

the instruments (joint semiobservables) are said to be compatible. (In general, instruments 

are not compatible.) 

The probability measure 

Tr ((a, 0 6,) (C)p) for all G E &(Q1 x Q,) and all 0 E ,!I(#) (6.26) 

is said to be the joint probabilit), measure for measurement by instrument b, following 

measurement by instrument 6, in state 0. 

THEOREM 5 [8]. The joint semiobserr~able c2, (G) on S?(fl, x Q,) into B(X) has the 

marginal semiobservables 

cz,(az x E) = a,(E) for a// E E :S(Q,), 

c,,(FxQ,) = a,,(F) for all FEN. 
(6.27) 

Each instrument d is, of course, compatible with itself, but it is not necessarily re- 

peatable in the sense of the following definition, cf. [8]: 

DEFINITION 4. An instrument 6 on :#(a) into K(S) is said to be repeatable iff 

CqE)&(F)Q = G2(EnF)[J for all E, FE I?cl(Q) and all p E L’(X). (6.28) 

It is said to be wleakly repeatable ilf 

Tr(&(E)C(F)c) = Tr(J(EnF)e) for all E, FE :#(Q) and all 9 E L’(X). (6.29) 

and strongly repeatable iff 9 is discrete (!J = {3.,):=, , dT( {lLn}) = : b,,, n E N) and 

(1) 

(2) 

(3) 

b, 6,,, Q = fSll,, 6 11, (J for all X, _r E 9 and all Q E L’(X) (ran Neu- 

mann repeatability hypothesis), (6.30) 

if Tr(b,,p) = Tre for all p E L’(H), then 8,~) = p (minimum dis- 

turbance principle), (6.31) 

if Tr(AK,e) = 0 for all A E L;(X), all II E N and all p E L:(X), then 

A = 0 (non-degeneracy condition). (6.32) 

As Davies and Lewis said, [8], p. 247, the existence of repeatable instruments is doubt- 

ful, although there are instruments which are repeatable in some approximate sense, 

cf. [8], [7]. As regards strongly repeatable instruments, we have their connection with 

the transformation T,, (6.1 I) of an observable A with a purely point spectrum (3.9) by 

means of 
f 

THI:OREM 6 [S]. Let fl be a discrete value .space and A = 2: i, P,, any obser~~able O~I 
II 1 

_%’ with the spectrum Q = {I.,]:=, . Then the formula 

e’(E)0 = c P,!,P, 
i.tt 

(6.33) 
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sets up a l-l-correspondence between the discrete spectral measures a(E) = c P,, on 
A”& 

a(l2) and strongly repeatable instruments on L’(X). In particular, a strongly repeatable 

instrument is uniquely determined by its associate semiobservable which is a spectral measure 

(observable). 

Thus the class of instruments for which the von Neumann repeatability hypothesis 

[67] is valid is uniquely determined by all observables with purely point spectra. There- 

fore, if we immediately repeat the measurement of an observable whose spectrum is not 

purely point, we do not obtain, in general, the same result. We get some statistics of 

results which is just fixed by a considered instrument F on B(Q) into K(X) and a state 

Q E d(X) by means of the probability measure 

p(F, Q, E) := Tr(g(E)e) for all EES?(&?). (6.34) 

The dual superoperator b*(E) to an instrument d(E) on a(Q) into K(2) is called 

by Davies an expectation [7] because it is a generalization of the concept of conditional 

expectation in an operator algebra introduced by Umegaki [62], [46]. We remark that 

the whole theory developed by Davies and Lewis [8], [7] and Holevo [27], [28] is for- 

mulated either in more abstract terms for the general case or in terms of Von Neumann 

algebras for the quantum case. As we said our theory is formulated a little less abstract 

and is therefore more elementary. In our setting we can also define an expectation in- 

dependently of an instrument by 

DEFINITION 5. An expectation on g(Q) into K*(Z) (= the set of all linear operators 

on and into L”(X)) is a function &‘*: B(Q) -+ K*(X) such that 

(1) A > 0 implies b*(E)A > 0 for all E E &l(Q) and all A E L”(S) (positivity), 

(6.35) 

(2) g*($j En) = $WEJ for all mutually disjoint E,, E g(X), the series 
n==l 

being understood in the weak operator topology (a-additivity), (6.36) 

(3) 6*(Q)Z = I (normalization). (6.37) 

Thus an expectation is a dual superoperator-valued probability measure, another 

example of generalized probability measures. Of course, we have 

<A, b(E)p) = Tr(A&(E)c) = Tr(@?*(E)A) = (Q*(E)A, p> for all E E @(l2) (6.38) 

and all A E L”(X) and e E L’(X). 

7. Q;lantum information channels 

After the mathematical preparation we are finally able to formulate a quantum in- 

formation theory in analogy to the classical one presented in a short summary in Section 4. 
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For this purpose we have to give first a schematic description of the physical proce- 

dures and processes occurring in a quantum information channel, e.g., in an arrangement 

for laser communication, cf. [52], [53]. 

In the classical case in each unit of time we register some object called fetter in the 

input and in the output. This letter may be considered as a value of a stochastic variable, 

and the process as its measurement. The quantum analogue will be a measurement 

of an observable (semiobservable), and a measured eigenvalue (value) corresponds to 

a letter. 

The letters in the input source can be controlled by means of some modulation ar- 

rangement (modulator) which prepares states of the system to get such or other letter 

(eigenvalue) one after another in a sequence, of course, with some probabilities which 

define the information of the communicated message. In the case of laser communication 

we have the following examples of modulators: a Pockels cell (changes the intensity of 

light), a Kerr cell (changes the polarization of light), a c/ye laser cell (changes the frequency 

of light), etc., for details cf. [52], [53]. Practically the most important are two sorts of 

modulation: the an~plitudc or intcnsitJ* mohkution (AM, effected, e.g., by a Pockels cell) 

and the frequency or energy’ n~orlulation (FM, effected, e.g., by a dye laser cell), the second 

being more modern and technically more perfect (it is much less sensitive to the noise 

caused by absorption, scatterring, density fluctuations, etc.). 

The next question is how to define the quantum system or the Hilbert space on which 

an observable (semiobservable) acts. It is clear that this is the quantum system of the 

physical carrier of information. In case of an AM laser sender, this is a light oscillator 

(mode) of a given frequency whose quantum energy levels correspond to numbers of 

photons emitted, and the same by the receiver. Thus we have two Hilbert spaces: the 

input X’J/lin and the output ROUt of the two oscillators (this may be, of course, generalized 

for many modes), and the third one X?’ = .YE’~~@&“,,, which corresponds to the double 

source and describes the interaction of both systems through the channel. For descrip- 

tion of the higher correlations of measurements we do not use the higher tensor products 

of these Hilbert spaces, but the joint instruments and probability measures. By an FM 

laser system the situation is reverse: the number II of photons is fixed, but their frequency 

is changing, so we can conveniently use the n-photon quantum mechanical description 

in the momentum space representation, cf. [I], [4l]. So we obtain a picture of particles 

(photons) moving from the input to the output through the channel (the rumli/lg HYIW 

approach in contradistinction to the previous stundi~lg excitation upprouch by AM). Thus 

we have only one Hilbert space .ry’ on which we make measurements at input, at the 

channel (without selection), and at output. To obtain the “double source” we hale only 

to apply the joint instrument concept and the joint probability measure. But to define 

the higher correlation of letters we have to take the higher tensor products of our .ui”. 

The same method can be applied when the modulation consists in changes of polarization 

of photons (e.g., by a Kerr cell), but then actually a finite-dimensional Hilbert space 

is sufficient. 
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In the present paper we shall consider only the running wave approach, not specifying 

whether it is for the frequency or the polarization modulation. The other approach can 

easily be reconstructed by the reader. 

As always in physics, we can use for description of time processes two pictures, the 

Heisenberg or SchrBdinger ones, which are mutually dual (cf. Sections 2 and 6 above). 

Here we prefer to use the Schrodinger picture, the other can be also easily reconstructed. 

We shall only consider a discrete quantum channel working in an impulse way, 

i.e., such in which both the input and output messages have the character of short impulses 

and are registered in the form of discrete numbers, 1.F and %i”‘(n E N), respectively. 

The sets Si, := {~~)~=,, Snout := {I~“‘}~==, correspond to the alphabets A and B dis- 

cussed in Section 4 and serve to define the input and output instruments 

fin: ~(~in) ~ K(~), tiout: &9((.n,“,) -+ K(H). (7.1) 

We assume as in Section 4 that time t is also discrete, i.e., that the registration (meas- 

urement) goes on in discrete instants. At each moment of time t E 2 we have a different 

physical system with its Hilbert space *e, (a beam of photons, electrons, ions, phonons, etc.) 

which serves as a medium (carrier) of communication and goes from the input to the 

output. Each system has the same (or similar) physical constitution (Hilbert space), but 

is in a different state pt which is influenced by the modulation arrangement and the out- 

side noise, is sent from the sender and received by the receiver. For simplicity we assume 

that the time scales in input and output are shifted by the retardation defined by the 

distance between two end stations and the velocity of the carrier in the channel. 

Under the given assumptions we can apply Theorem 6 and say that to the instruments 

Ri, and b,,, there correspond bijectively the associated observables (spectral measures) 

CIin: .&?(L&) -+ B(:P), aout: B(Q,“,) -+ B(Z). (7.2) 

Denoting ah” : = a,,( (lp}) = f-y, ai”’ : = uout( {A;“‘}) = fyf we can introduce probabilities 

Pnt i” : = p(Qin, pi”, 3.:) = p(ain, pi”, A?) = Tr(ap$‘), (7.3) 

Pnt Out : = p(b,,, , p:“‘, 2:‘) = p(uout, p;“‘, /I~“‘) = Tr(u~“‘&“‘) (7.4) 

for all IZ E N and all t E Z. For stationary channels p,$‘, psy’ are independent of t and we 

may write pp and pi”’ or p;,” (1) and p,!,” (1) to indicate that these probabilities correspond 

to l-words (l-letter words). To be able to calculate information we assume that instruments 

8in, 6out or observables a,,, uout (we may use also self-adjoint operators Ai, and A,,, 

on 2) are thermodynamically regular (i~~formzutionally regular), i.e., their spectra { I.f”},“= 1, 
{3L~Uf}~~1 fulfil the condition (3.10). Then according to (3.11) we obtain the information 

of l-words in input and output (Q: E 4,,,(H); &“’ E 4,0,,(H); cf. (3.12)) 

cc co 

Hi” ._ _ 
1 .- Iz ,p~(l)lnp~(l), IYyt := - c pZYl)ln&“‘(l), (7.5) 

n=l /I=1 

being finite non-negative numbers. We remark once more that for each t E Z we make 
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a measurement on a different physical system (set of photons, electrons, etc., emitted 

at time t), therefore Q]” (&“‘) work in seperate Hilbert spaces for each t and we have no 

problem of repeated measurement. 

For k-words (k > 1) we build the Hilbert space 

.zk := ~%?/eo . . . 02 = %,@ . . . @%(7r+k, (7.6) 
k times 

i.e., the kth tensor power of Z’. Then we have states c(k) E A(Pk) which are not necessarily 

the tensor products of the states on 3/e (the latter occurs only when the letters are stoch- 

astically independent). Because the systems (subsystems) Zt+i (0 < i < k) are distin- 

guished by time which is considered as known, we have no problem of mixing them (no 

necessity of symmetrizing or antisymmetrizing). Then we can also apply to the ith sub- 

system operators a:: (multiplied tensorially by the respective unity operators with respect 

to all other subsystems). Of course, since the respective observables commute, as in the 

classical case, we have no problem with the joint probability. We obtain 
in 

(8$fi) := &&y{i,::;‘))), 

y;+?, , . . . . /?k) := Tr(B$)(n,) . . . &;;(&“‘(x)) 
Cl”, 

O”, D”, out 
= Tr(ai: . . . ut 9’” (k)) = Tr(Ptt . . . Pt’p”(k)) (7.7) 

and 

in 
cl‘ in 

H 
out . 
k . - c pff(n,, . ..) n)lnp~‘(n], . . . . ?fk). 

“,,...,“r=l 

(7.8) 

Then we define as in the classical case 

Hi” := lim ;-HP, Ho”’ : E lim +Hi”. (7.9) 
k-+os k-+cc 

Since probabilities (7.7) have the usual classical sense, the convergence of information 

in (7.10) is secured for stationary quantum sources by the same theorem as in the classical 

case. The correlations of letters in k-words are, of course, given by the states c(k) which 

describe the statistics of modulation of information in the quantum communication 

apparatus. 

Before we go over to the double source, let us discuss the connection between pi”(k) 

and @“” (k). We obtain, according to our model (Ic E N), 

[J’“‘(k) = Ech(k) 0 #)(SIj)i,) 0 . . . 0 t”j;‘(~,,)$“(k), (7.10) 

where b,,(k) is a positive linear endomorphism of L1(Yk) describing the influence of the 

noise in the channel on the statistics of X--words. b,,(k) is as if an instrument without 

“selection”, i.e., for E = Q, cf. (6.21). 
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Now the statistics of the double source “input-output”, cf. Fig. 2, can be described 

by the following definitions, analogous to those in Section 4 and corresponding to our 

present quantum model : 

Pkb 1, . . ..nk. ml, ...,mk) 

:= Tr(b$(~n,) 0 . . . 0 &,“,l(mk) 0 b,,,(k) 0 &,!,‘(nI) o . . . o &j~‘(nk)~‘“(k)), (7.11) 

-. ,p-out : _ _ c Pkh, . . ..nk. ml? ...9nZk)lnpkhT . . ..nk. ml, ...,mk), (7.12) 
“I, _.., 4= 1 
m,, . . ..m*= 1 

Hi”-“” = ii; $- f$~-outs (7.13) 

We assume that the noise in the channel described by {8’C,,(k)}~zI is such that HinMout 
in (7.13) is finite (in general, Hinmsut can be non-negatively finite or positively infinite). 

We say that channel with such a noise is thermodynamically regular. 

We can easily check from (7.7), (7.10) and (7.11) by using (6.21) and (2.17) that 

m 

Pk?l, . . ..nk> = x pkh, ...,nk; ml, . . ..mk)r (7.14) 
m,,...,mh=l 

(7.15) 

i.e., that pp and pp’ are marginal probability measures of pk, as it should be by the con- 
in 

struction of the double source. Of course, the other conditions for py’, cf. [3], pp. 5-6 

(the stationary case) 
in 

Pokut(nlY . . . . nk> > 0, 

m cn 

p;“(n,, . . ..Mk) = c 

in 
Pokul(flI, ...? nk, n> = 

7 in 
(7.16) 

L 

00 

PO,“:,@, a,, ... , nk), 

n=l fl=l 
c 

pf-+n) = 1 
n=l 

are also satisfied, as well as the analogous ones for pk. 

Now we can define as in Section 4: 

R’WOU’ ._ 
.- 

Hi” + HO”’ _ Hill-out, 

H(in 1 out) : = Hin-o’Jt - Ho”‘, 

H(‘ut ) in) : = Hi”‘““’ - Hi”, 

so 

p-out = H’” - H(in 1 out) = Ho”‘- H(out 1 m) . 

(7.17) 

(7.18) 

(7.19) 

(7.20) 



68 R. S. INGARDEN 

Introducing the conditional probabilities, cf. (4.12) 

(7.21) 

/vi”’ i”(m,, . ..) mkl/?, , . ..) nk) := 
pk(fll ---:.2.- ‘-’ “.’ 

k; 171 mk) 
d,?,, . . ..nk> 

) (7.22) 

where we assumed ,J;” > 0. we can easily obtain in the well-known way, cf. [26], 

II I 

Hk(in]out) := - II 

7 
/P”(117, . . , /77A) 

z P in ‘“‘(f?! , , flk l/72, , ,.. , /nk) x 
“I,, . ..W~iI 5 .%-I 

x In/‘[” OL’t(n, , , uijm, . _. , IV,). (7.23) 

I I 

c 

3 
H,(outJin) := - /P(il, , , I?!,) z I) o”’ ym,, , /??klnl, ._.,n,)x 

%,_..,f~I= I WI, rnk = I 

x Inp~“’ in(/??, , . , mkln, , , nr). (7.24) 

H(in I out) = ,‘im -: H,(in (out), H(out (in) = lim -’ H,(out 1 in). 
,, .,<, k 

(7.25) 

Now we can write as in (4.10) for the channel capacity 

(6’ := sup Rin-out = sup Rin-out, (7.26) 
Hi” pin 

We see that in such a way the quantum information theory has been as if reduced 

to the classical one. We have, however, to remember that under the classical “level” there 

exists the quantum one (as is the case of the quantum probability theory). In other words, 

$t and /jp are not arbitrary, but those given by (7.7) and (7.1 I). Thus, from this point 

of view, the quantum theory is a special case of the classical one. Therefore, the coding 

theory (the Shannon coding theorems) require a special treatment and in principle we 

have two distinct coding theories, classical and quantum. We plan to consider the quantum 

coding problem in a separate paper in future. 

8. Exnmplcs 

For the lack of space we cannot consider here any real application of our theory 

(this may be also the subject of future papers), except for checking the theory in simplest 

limiting cases. 

The most trivial case is that of the I’&uf clzannc~l without noise and without non-trivial 

translation, i.e., such in which the input and output are identical and one is connected 

directly with the other. Then we have S,,,(/C) = In (= identity operator in L’(.X’“)) and 

CF;,f,‘, = f5!;‘, and using Theorem 6 and (6.30) we obtain 

Pk(n, , . . . , i?~; n7, , / 177,) = d,,> ,,,, . . . &~,,,~p:n(fl, , , ilk), (8.1) 
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or 

p~f!in(n?l, ,..) wl~l/z,, . ..) nk) = b,,,, . . . 8,,,, (8.2) 

for all k E N and all ni, mi EN (i = 1, . , k). We have from (7.24) 

H,(out]in) = 0 for all k E N, H(out I in) = 0. (8.3) 

From (7.20) we obtain 

Ribout = HO” = Hi” (8.4) 

since due to (8.1) and (7.15) 

p~+z,, . . . ) t?k) = &(n, ) ) ??k) for all k, 11~ EN. (8.5) 

Hence from (7.25) 

%’ = co (8.6) 

and we have no limit of transmission of information. 

As a second example we shall consider the case in which the input is classical and 

the output is quantum. For simplicity we additionally assume that there are no corre- 

lations between letters (the so-called BermxrNi shift, cf. [3]). Then we have 

P?““‘(M IIT) = Tr(P,c,), (8.7) 

where the observable A in the output is given by (3.9), the value of the classical stochastic 

variable in the input is indexed by IZ EN, and Q,, denotes the output state occurring under 

the condition that in the input we have the nth event. We obtain 

J,(p) : = Rin-out = H;“‘--H,(out]in) = Ha($U’(l))- rpI(~~)H,(:,,,) 
n==l 

(8.8) 

where p = {p,,}~=, and we used the first notation in (3.11). This case exactly corresponds 

to the case discussed by Holevo in his excellent papers [27], [28], except for the addi- 

tional assumption in [27], [28] that the Hilbert space .%? is finite dimensional (N < co). 

By this assumption Holevo showed [35] that 

(8.9) 

where H denotes von Neumann information (3.5) and where the equality sign occurs 

if and only if all cn mutually commute. (In the same paper also some stronger estimation 

of J,(p) from above has been given.) These estimations are, of course, also estimations 

for the channel capacity %’ (in the Bernoulli case). 

Now we can mention the important extrapolation of such a theory similar to that 

discussed by Shannon and leading to his celebrated formula (4.11) used very much by 
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engineers. Namely, Holevo [27] discussed instead of discrete observable A a semi- 

observable (6.8) based on Glauber’s coherent states. Then n is replaced by a complex 

number GI E C, and the Shannon Gaussian signal and noise distributions by the Gaussian 

distributions 

in input (classical) : 

p(a) = (xS)-‘exp - J’2 
( 1 S 

(S > O), 

in output (quantum) : 

By these assumptions one obtains, [27] p. 40, 

(8.1 I) 

(8.12) 

which is a result of the type (5.5). 

Thus we see that our theory gives qualitatively reasonable results. For quantitative 

checking and practical applications the theory requires further investigations and mathe- 

matical development. The aim of the present paper was only to give a general formula- 

tion of the quantum information theory of the Shannon type. 
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