

Blind Oracle Quantum Computation David DiVincenzo KCIK on-line symposium, May 15, 2020

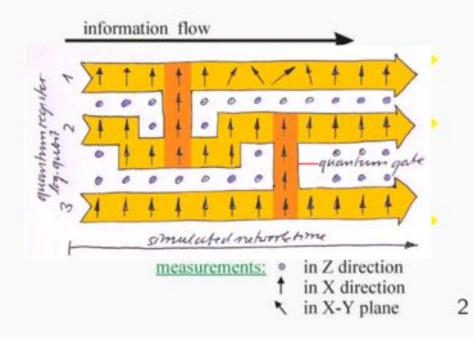
Outline

With PhD student Cica Gustiani

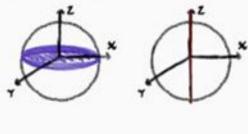
• Motivations:

- Give meaning to quantum oracles, and oracle algorithms, in a distributed-computing setting
- Extend the setting of "blind quantum computation"
- Optimise small, interesting distributed q. algorithms
- New setting: Blind Oracle (Distributed) Q. Comp.
- Review: Blind Q. Comp.,
- Review: Measurement-based Q. Comp.
- Interesting oracle: exact Grover search
- Implementation ideas: networked NV centers

QC: cluster states $|\Phi_{C}\rangle$



algorithm: adaptive measurements

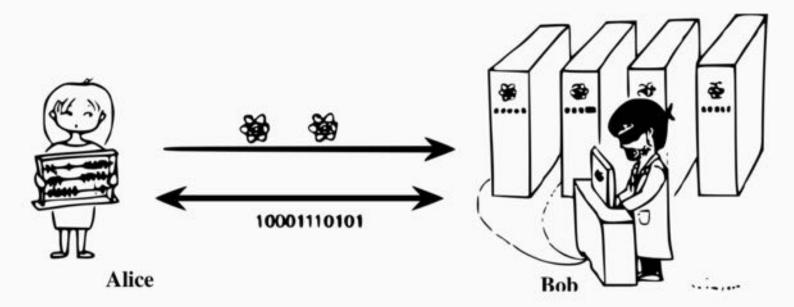


MZ

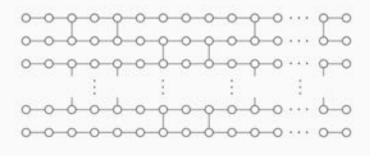
VZ

²R. Raussendorf and H. J. Briegel, *A one-way quantum computer*, Phys. Rev. Lett. 86, 5188 (2001).

Universal blind quantum computation (UBQC)



© J. F. Fitzsimons



(brickwork state)

UBQC: protocol⁴

Graph state preparation

- Alice: has in mind $\{(G_b, I, O), \vec{\phi}\}, G_b = brickwork state prepares <math>Q = \{|\psi\rangle, |+_{\theta_i}\rangle_{i \in I^c}\}$ and send them to Bob
- Bob: entangles Q according to G_b

Classical interaction and measurement

For each $i \in O^c$:

- Alice: computes φ'_i (function of φ and previous measurement outcomes) computes δ_i = φ'_i + θ_i + πr_i, r_i ∈ {0, 1}, and broadcast δ_i
- Bob: measures *i* with angle δ_i

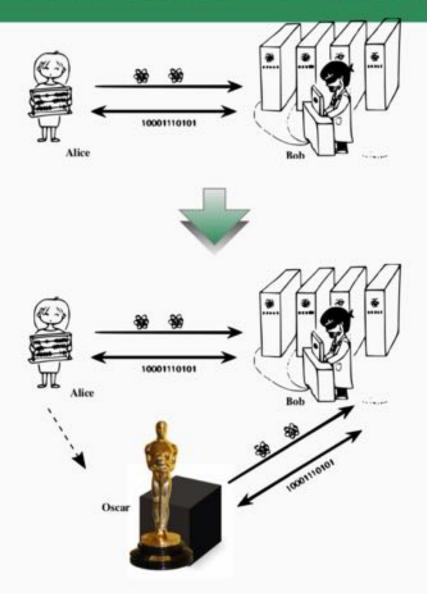
broadcast measurement outcome s_i

• Alice: real outcome $s_i \oplus r_i$

$$\theta_i, \delta_i, \phi_i' \in \left\{0, \frac{\pi}{4}, \dots, \frac{7\pi}{4}\right\}$$

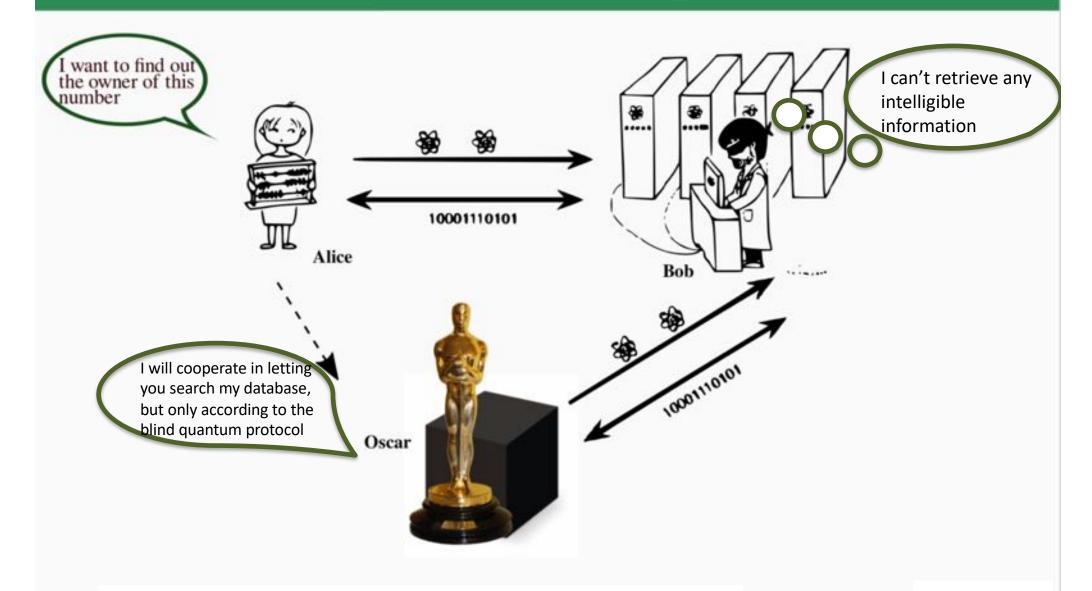
³Broadbent, et al., Universal blind quantum computation, arXiv:0807.4154

Our work: blind oracular quantum computation (BOQC)⁵



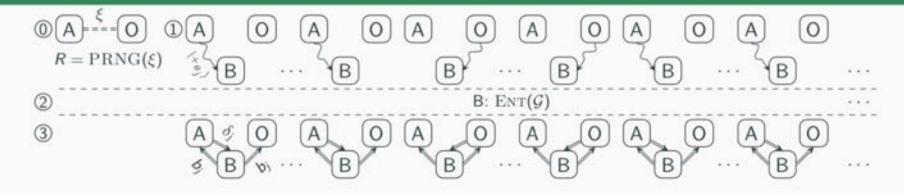
⁴Cica Gustiani, David P. DiVincenzo, Three-qubit exact Grover within the blind oracular quantum computation scheme, 2019, arXiv:1902.05534

Our work: blind oracular quantum computation (BOQC)



Example for Grover oracle: telephone-number database search

BOQC: protocol



Graph states preparation

Alice: has in mind $\{(G, I, O), \vec{\phi}\}, G \equiv \{G_j\}, without$ oracles, input $|\psi\rangle$ Oscar: has in mind $\{\{F_j\}, \vec{\varphi}\}$ (total graph \mathcal{G}) Alice, Oscar: share ξ via secure channel; $\vec{r} = PRNG(\xi)$

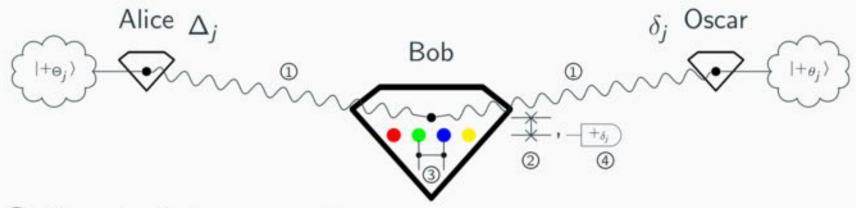
Alice and Oscar send their qubits to Bob

Bob: entangle qubits according to ${\mathcal{G}}$

Classical interaction and measurement

Like UBQC; everyone knows which nodes belong to Alice/Oscar.

BOQC in NV-centers



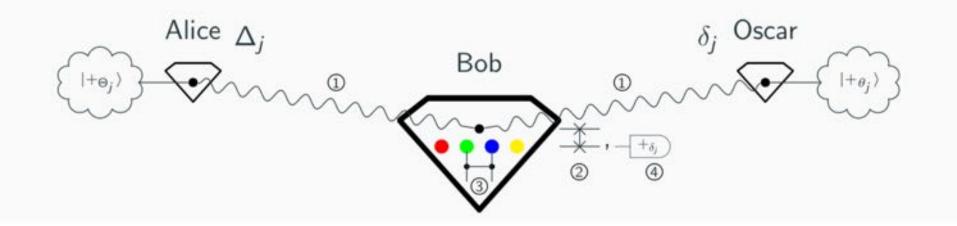
Remote state preparation:

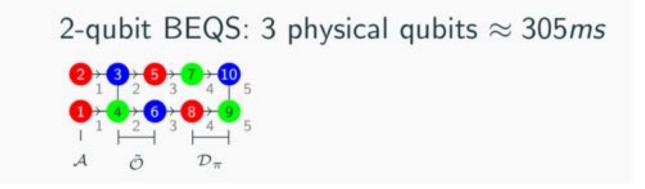
 $\frac{1}{\sqrt{2}} (|01\rangle - |10\rangle) = \frac{1}{\sqrt{2}} (|+_{\theta}-_{\theta}\rangle - |-_{\theta}+_{\theta}\rangle), \text{ Alice/Oscar measures}$ in θ ; Bob receives $\frac{1}{\sqrt{2}} (|0\rangle + e^{i(\theta+a\pi)}|1\rangle)$

- ② Swap electron-nuclear spin
- ③ Entangling (CPHASE) operations
- (4) Measure in δ

No timing coordination; Alice and Bob do ① after the corresponding qubit is free

BOQC in NV-centers: 3- and 2-qubit BEQS





BEQS: Blind Exact Quantum Search (i.e., Grover problem)

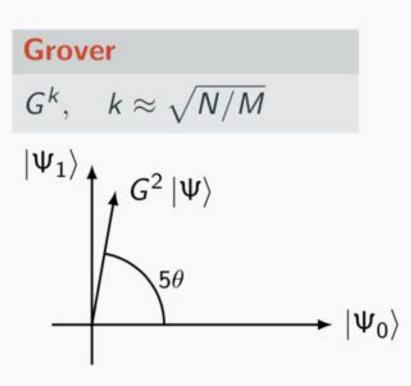
Going to 3-qubit Grover

- 2 interactions with oracle needed
- We will go beyond textbook Grover
 modify so that it is zero-error (Peter Høyer)
- 3-qubit isn't the same as N=8
- Try subset strategy to reduce circuit count

Grover, Høyer

Indices
$$x = \{0, ..., N - 1\}; N \coloneqq 2^n$$

Oracle: sol. $y = \{j \in x : f(j) = 1\};$ nsol. $x/y\{j \in x : f(j) = 0\}$
 $|\Psi\rangle = \frac{1}{\sqrt{N}} \sum_{j \in x} |j\rangle = \sqrt{a} |\Psi_1\rangle + \sqrt{1 - a} |\Psi_0\rangle; a \coloneqq M/N$

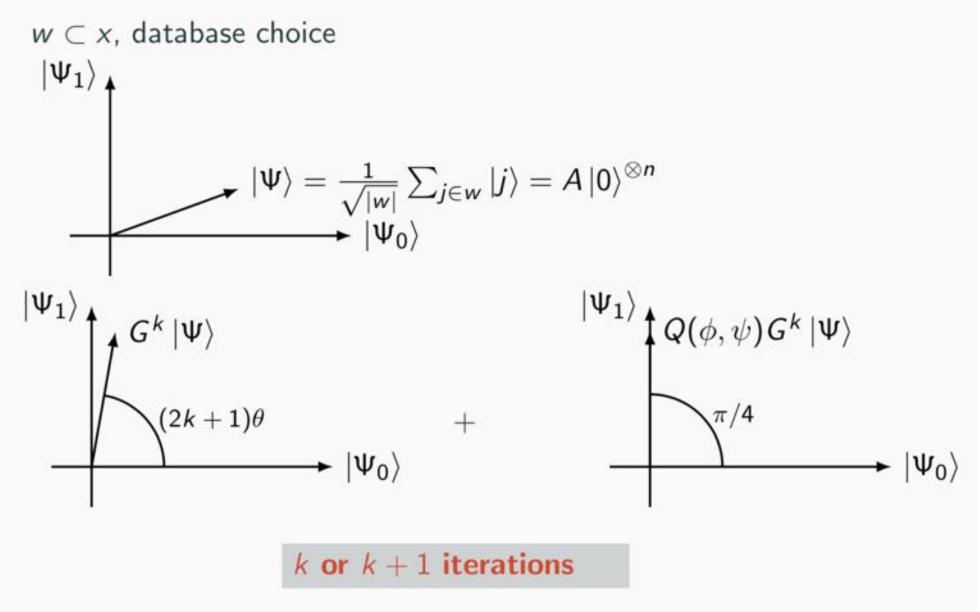


Høyer

 $egin{aligned} &Q(\phi,\psi) ext{ rotates } |lpha| \leq 2 heta \ &Q(\pi,\pi) \equiv G ext{ rotates } 2 heta \ &Q(\phi,\psi) = D(\psi)O(\phi) \end{aligned}$

$$egin{aligned} D(\psi) &= I - (1 - e^{i\psi}) \ket{\Psi} & \langle \Psi ert \ O(\phi) &= I - (1 - e^{i\phi}) \ket{\Psi_1} & \langle \Psi_1 ert \end{aligned}$$

Grover + Høyer



15

```
3 qubits, N=8, states are 01234567
(i.e, 000,001,010,011,100,101,110,111)
```

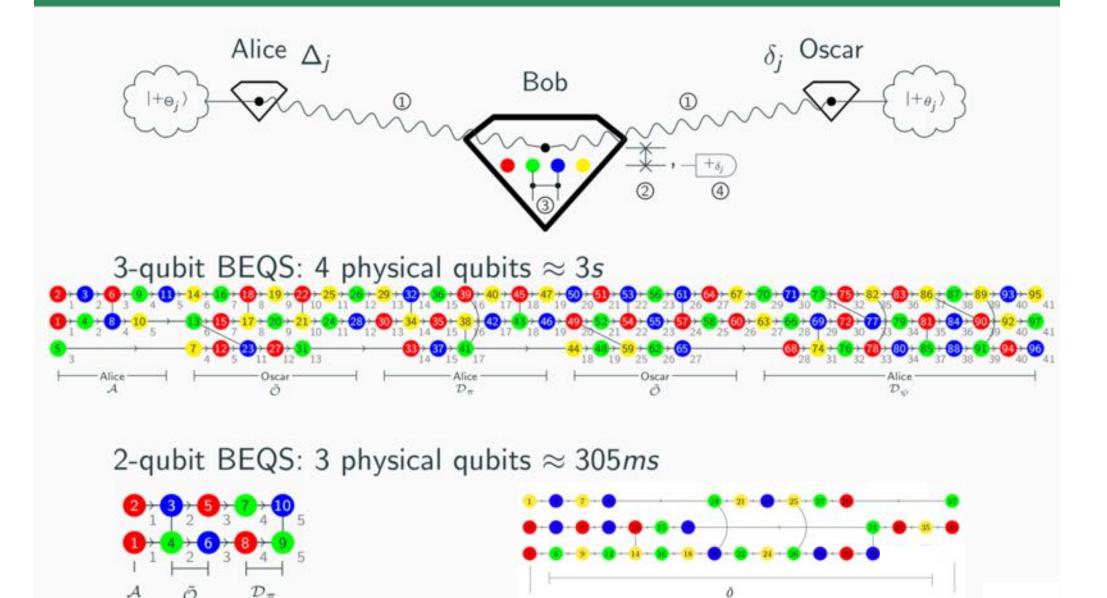
But smaller instances can also be created inside 3 qubits:

N=5: 01234, 01247, 01256 (all others equivalent to these 3) N=6: 012345, 012347, 012567 (all others equivalent to these 3) N=7: 0123456 (all others equivalent)

Circuit count is different for all these.

The most efficient that we have found is N=5, 01256, but where item 0 gives output as superposition of 0 and 4.

BOQC in NV-centers: 3- and 2-qubit BEQS



2-qubit Blind Simon – 4 physical qubits (R. Sachdeva)

Current work – formalize security with the tools of Abstract Cryptography

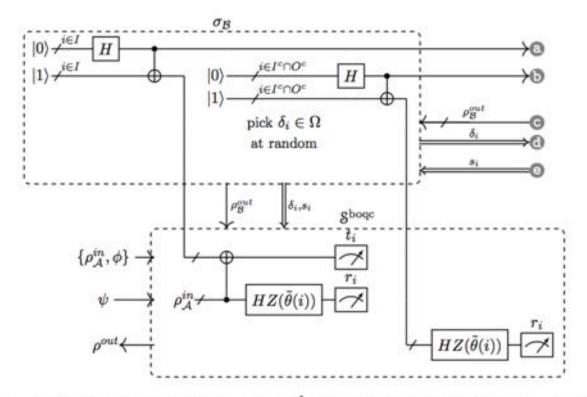


Figure 7: Pictorial representation of $\sigma_{\mathcal{B}}S^{boqc}$ defined in Protocol 3. Each variable

Outline

With PhD student Cica Gustiani

- Motivations:
 - Give meaning to quantum oracles, and oracle algorithms, in a distributed-computing setting
 - Extend the setting of "blind quantum computation"
 - Optimise small, interesting distributed q. algorithms
- New setting: Blind Oracle (Distributed) Q. Comp.
- Review: Blind Q. C., Measurement-based Q. C.
- Interesting oracle: exact Grover search
- Implementation ideas: networked NV centers