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(and we noticed that readout noise in those devices is terrible…)
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▪ I have the results in additional slides!
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▪ The protocol is probabilistic and attains optimal success probability 
1

𝑑
.

▪ We used the results to analyze relative power of POVMs vs PMs in the task of 
unambiguous state discrimination.

▪ We implemented our protocol for 1 qubit on IBM’s quantum device.
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▪ We developed a simple procedure to mitigate classical measurement noise by 
classical processing of experimental data.

▪ We analyzed effects of deviations from noise model and of finite-size 
statistics on mitigation procedure.

▪ We validated classical noise model on Rigetti’s and IBM’s device.

▪ We experimentally benchmarked our mitigation procedure in various 
quantum information protocols on up to 5 qubits.
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