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* A quantum measurement with n-outcomes on d-dimensional space can be -

represented by vector of operators on that space:



‘Generalizequantummeasurements - POVMs -

‘ ——

« A quantum measurement with n-outcomes on d-dimensional space can be - i
represented by vector of operators on that space:

et

AA:<%NU‘”)/Maj
» s.t.% == 3 ;
/M,;ZO};M&; ﬂ




Projective measurements - PMs
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= An important subset of all POVMs is a set of projective measurements:
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- Born’s rule
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 |f we perform measurement M on quantum state p, the probability of

obtaining outcome "i” is given by Born's rule:
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Simulating all quantum measurements using only projective measurements and postselection
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We report an alternative s
the usage of an auxiliary system. Our method utilizes solely (a) class
(b) projective measurements on a relevant quantum system, and (c) postselection on nonobserving certain
outcomes. The scheme implements arbitrary quantum measurement in dimension ¢ with the optimal success
probability 1/d. We apply our results to bound the relative power of projective and generalized measurements
for unambiguous state disc
Interestingly, due to noise involved in the implementation of entangling gates, the quality with which our scheme
implements generalized qubit measurements outperforms the standard construction using an auxiliary system.
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- Relative power - POVMs vs PMs
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* There are known examples of quantum information tasks, in which
generalized measurements outperform standard projective measurements,
e.g., quantum state discrimination or quantum tomography.
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* There are known examples of quantum information tasks, in which
generalized measurements outperform standard projective measurements,
e.g., quantum state discrimination or quantum tomography.

. Yet, often in-experimental setups, we can perform only projective
measurements (up to the noise).

» Standard method of performing POVMs — Naimark’s dilation:
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* There are known examples of quantum information tasks, in which
generalized measurements outperform standard projective measurements,
e.g., quantum state discrimination or quantum tomography.

. Yet, often in experimental setups, we can perform only projective |
measurements (up to the noise).

» Standard method of performing POVMs — Naimark’s dilétion:

Xv[f[r(géf? OKOIP) g/\/m;)'

qmmeL% WW B th@wded,S@%Lf,




~Relative power - POVMs vs PMs

— ® = ——— - ——————— e = -

» Question —can all POVMs be'implemented by projective measurements (on
Hilbert space of interest) and only classical resources? |
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» Question —can all POVMs be'implemented by projective measurements (on
Hilbert space of interest) and only classical resources? |

= Answer —yes, but the protocol is probabilistic.
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~ POVMs vs PMs - main results
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= Question —can POVMs be im'pleménted by projective measurements (on
Hilbert space of interest) and only classical resources?

= Answer®—yes, but the protocol is probabilistic.
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* Question —can POVMs be im'pleménted by projective measurements (on
Hilbert space of interest) and only classical resources?

= Answer®—yes, but the protocol is probabilistic.

* In general, probability of success is —-Itis optimal, though it can be better.



"POVMs vs PMs - main results

Question —can POVMs be im'pleménted by projective measurements (on
Hilbert space of interest) and only classical resources?

Answer —yes, but the protocol is probabilistic.
In general, probability of SUCCesS is %. It is optimal, though it can be better.

We analyzed the protocol in context of the unambiguous state discrimination
and investigated asymptotic behavior for two general ensembles of states.



"POVMs vs PMs - main results

e— - ' —_— . e e e T s %

Question — can POVMs be im'pleménted by projective measurements (on
Hilbert space of interest) and only classical resources?

Answer —yes, but the protocol is probabilistic.
In general, probability of success is —-Itis optimal, though it can be better.

We analyzed the protocol in context of the unambiguous state discrimination
and investigated asymptotic behavior for two general ensembles of states.

We also experimentally implemented POVMs for 1 qubit on IBM's quantum
device and observed better quality of implementation than for Naimark'’s
extension. '
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Question — can POVMs be im'pleménted by projective measurements (on
Hilbert space of interest) and only classical resources?

Answer —yes, but the protocol is probabilistic.
In general, probability of success is —-Itis optimal, though it can be better.

We analyzed the protocol in context of the unambiguous state discrimination
and investigated asymptotic behavior for two general ensembles of states.

We also experimentally implemented POVMs for 1 qubit on IBM's quantum
device and observed better quality of implementation than for Naimark'’s
extension. ‘

(and we noticed that readout noise in those devices is terrible...)
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POVMs as 3 model of noise
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= Previously, we wanted to implement POVMs to achieve some goal. |
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POVMs as a model of noise
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~ POVMs as a model of noise
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~ POVMs as a model of noise
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» However, if the noise is classical:
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~ POVMs as a model of noise
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Mitigation of classical noise
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When does the mitigation work?
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= We analyzed the effects of non-classical noise:
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e We analyzed the effects of non-classical noise:
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- When dOES'thé mitigétion wohk?
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When_doeS'the mitigation work?
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E ‘And the effects of finite-size statistics:
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When does the mitigation work?
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Experimental results - overview
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£ ‘We tested if the noise is classical in Rigetti’s and IBM's devices.



Experimental results - overview

S - = - —— - ———— — === = :

= We tested if the noise is classical in Rigetti’s and IBM’s devices.

- We}benchma‘rk'ed our mitigation procedure for following routines:
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. We}benchma‘rk'ed our mitigation procedure for following routines:
- Quantum State Tomography on 1 qubit and 2 qubits,
— Quantum Process Tomography on 1 qubit,

— Grover's search and Bernstein-Vazirani, gates on 3 qubits, measurement
on 2 qubits, :

— Implementation of certain probability distributions on 5 qubits.
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Experimental results - overview
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= We tested if the noise is classical in Rigetti’s and IBM’s devices.

. We}benchma‘rk'ed our mitigation procedure for following routines:
- Quantum State Tomography on 1 qubit and 2 qubits,
— Quantum Process Tomography on 1 qubit,

— Grover's search and Bernstein-Vazirani, gates on 3 qubits, measurement
on 2 qubits, :

— Implementation of certain probability distributions on 5 qubits.

= | have the results in additional slides!
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- Summary - part I
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measurements using only projective measurements on given Hilbert space
and classical resources.
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* We developed a protocol, whichimplements arbitrary quantum

measurements using only projective measurements on given Hilbert space
and classical resources.
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We developed a protocol, which implements arbitrary quantum
measurements using only projective measurements on given Hilbert space
and classical resources.

The protocol is probabilistic and attains optimal success probability 5

We used the results to analyze relative power of POVMs vs PMs in the task of
unambiguous state discrimination. g

We implemented our protocol for 1 qubit on IBM’s quantum device.
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= We developed a simple procedure to mitigate classical measurement noise by
classical processing of experimental data.
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- Summary - part II

We developed a simple procedure to mitigate classical measurement noise by
classical processing of experimental data.

We analyzed effects of deviations from noise model and of finite-size
statistics on mitigation procedure.

We validated classical noise model on Rigetti’s and IBM's device.

We experimentally benchmarked our rhitigati_on procedure in various
quantum information protocols on up to 5 qubits. v



¥ some cHePent research topics

= Currently, we are developing 'realist/ic_multi-é|ubit readout noise model, which
can be efficiently described.



¥ some cHePent research topics

= Currently, we are developing 'realist/ic_multi—qubit readout noise model, which
can be efficiently described.

= We test the performance of near-term quantum algorithms (QAOA) under the
realistic readout noise, and we develop methods to mitigate it. a



¥ some cHePent research topics

= Currently, we are developing 'realist/icmulti-qubit readout noise model, which
can be efficiently described.

= We test the performance of near-term quantum algorithms (QAOA) under the
realistic readout noise, and we develop methods to mitigate it.

= We analyze the statistical deviations in the estimation of the sum of the local
terms of k-local Hamiltonians, and their effects on the above. ~
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Experimental results - noise validation
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£ ‘We tested if the noise is classical in Rigetti’s and IBM'’s devices:
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Experimental results - mitigation benchmark -
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EXperimental results - mitigation benchmark -
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Name ~ Standard Corrected Q
-. | Uniform  0.110 + 0.006 0.100 + 0.007 0
- ' E- - : NOT 0.66 4= 0.02 0x£0 0.36 == 0.09
E ( \\ - Mixed 0.196 + 0.006 0.031 £ 0.008 0.0194 0.005

&\) Q? \ \ : (a) Without accounting for correlations.

\L\T\/ o Name . Corrected Q
@QRbFY()) S 7 niform = <
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Mixed T

(b) Accounting for correlations for one pair.
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Name ~ Standard Corrected o

: | Uniform  0.110 4 0.006 0.100 £0.007 0
o E | - NOT  0.66 = 0.02 040 0364009
E |  Mixed  0.196 4 0.006 0.031 % 0.008 0.019- 0.005

&\) Q? \ (a) Without accounting for correlations.

S | e L e £ L7 AR
\L\ \ \ Name Corrected ' o
?@Q \b%()) T [ O N C) Uniform  0.03 £ 0.02 0 _
— @\ V)Q) NOT  0.004 +0.023  0.04 £ 0.04

Mixed 0.022 + 0.00/7 0.023 £+ 0.007

(b) Accounting for correlations for one pair.



